J. Semicond. >  In Press

合乐彩票

Linlin Su , Dong Zhou , Hai Lu , , Rong Zhang and Youdou Zheng

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: 4H-SiC single photon counting avalanche photodiodes (SPADs) are prior devices for weak ultraviolet (UV) signal detection with the advantages of small size, low leakage current, high avalanche multiplication gain, and high quantum efficiency, which benefit from the large bandgap energy, high carrier drift velocity and excellent physical stability of 4H-SiC semiconductor material. UV detectors are widely used in many key applications, such as missile plume detection, corona discharge, UV astronomy, and biological and chemical agent detection. In this paper, we will describe basic concepts and review recent results on device design, process development, and basic characterizations of 4H-SiC avalanche photodiodes. Several promising device structures and uniformity of avalanche multiplication are discussed, which are important for achieving high performance of 4H-SiC UV SPADs.

Key words: SiCavalanche photodiodessingle photon countingultraviolet detection

Abstract: 4H-SiC single photon counting avalanche photodiodes (SPADs) are prior devices for weak ultraviolet (UV) signal detection with the advantages of small size, low leakage current, high avalanche multiplication gain, and high quantum efficiency, which benefit from the large bandgap energy, high carrier drift velocity and excellent physical stability of 4H-SiC semiconductor material. UV detectors are widely used in many key applications, such as missile plume detection, corona discharge, UV astronomy, and biological and chemical agent detection. In this paper, we will describe basic concepts and review recent results on device design, process development, and basic characterizations of 4H-SiC avalanche photodiodes. Several promising device structures and uniformity of avalanche multiplication are discussed, which are important for achieving high performance of 4H-SiC UV SPADs.

Key words: SiCavalanche photodiodessingle photon countingultraviolet detection



References:

[1]

Razeghi M. Short-wavelength solar-blind detectors-Status, prospects, and markets. Proc IEEE, 2002, 90(6), 1006

[2]

Campbell J C. Recent advances in avalanche photodiodes. J Lightwave Technol, 2016, 34(2), 278

[3]

Wang Y, Qian Y, Kong X. Photon counting based on solar-blind ultraviolet intensified complementary metal–oxide–semiconductor (ICMOS) for corona detection. IEEE Photonics J, 2018, 10(6), 1

[4]

Li B, Jiang W, Liang Y. Solar-blinded detector by UV radiation from missile plume. Aerosp Electron Warf, 2006, 22(06), 7

[5]

Chen H, Liu K, Hu L, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18(9), 493

[6]

Zamora D, Torres A. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples. Water Sci Technol, 2014, 69(11), 2305

[7]

Kumamoto Y, Fujita K, Smith N I, et al. Deep-UV biological imaging by lanthanide ion molecular protection. Biomed Opt Express, 2016, 7(1), 158

[8]

Razeghi M. Deep ultraviolet light-emitting diodes and photodetectors for UV communications. Proc SPIE, 2005, 5729, 30

[9]

Jackson J C, Phelan D, Morrison A P, et al. Toward integrated single-photon-counting microarrays. Opt Eng, 2002, 42(1), 112

[10]

Isoshima T, Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence. Rev Sci Instrum, 1995, 66(4), 2922

[11]

Munoz E, Monroy E, Pau J L, et al. III nitrides and UV detection. J Phys-Condens Mat, 2001, 13(32), 7115

[12]

Pau J L, Mcclintock R, Minder K, et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Appl Phys Lett, 2007, 91(4), 41104

[13]

Roschke M, Schwierz F. Electron mobility models for 4H, 6H, and 3C SiC. IEEE TRANS Electron Devices, 2001, 48(7), 1442-1447

[14]

Pearton S J, Zolper J C, Shul R J, et al. GaN: Processing, defects, and devices. J Appl Phys, 1999, 86(1), 1

[15]

Monroy E, Omn S F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Tech, 2003, 18(4), R33

[16]

Powell A R, Rowland L B. SiC materials-progress, status, and potential roadblocks. Proc IEEE, 2002, 90(6), 942

[17]

Yan F, Luo Y, Zhao J H, et al. 4H-SiC visible bling UV avalanche photodiode. Electron Lett, 1999, 35(11), 929

[18]

Xin X, Yan F, Yan F, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electron Lett, 2005, 41(4), 212

[19]

Beck A L, Karve G, Wang S, et al. Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2005, 17(7), 1507

[20]

Shaw G A, Siegel A M, Model J, et al. Deep UV photon-counting detectors and applications. Proc SPIE, 2009, 7320(73200J), 1

[21]

Beck A L, Guo X, Liu H, et al. Low dark count rate 4H-SiC Geiger mode avalanche photodiodes operated under gated quenching at 325 nm. Proc SPIE, 2006, 6372, 63720O-1

[22]

Li L, Zhou D, Lu H, et al. 4H-SiC avalanche photodiode linear array operating in Geiger Mode. IEEE Photonics J, 2017, 9(5), 6804207

[23]

Restelli A, Rech I, Maccagnani P, et al. Monolithic silicon matrix detector with 50 μm photon counting pixels. J Mod Optic, 2007, 54(2/3), 213

[24]

Cicek E, Vashaei Z, Mcclintock R, et al. Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl Phys Lett, 2010, 96(26), 261107

[25]

Bai X, Liu H, Mcintosh D C, et al. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2009, 45(3), 300

[26]

Vert A, Soloviev S, Sandvik P. SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection. Phys Status Solidi A, 2009, 206(10), 2468

[27]

Bai X, Mcintosh D, Liu H, et al. Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2007, 19(22), 1822

[28]

Li L, Zhou D, Liu F, et al. High fill-factor 4H-SiC avalanche photodiodes with partial trench isolation. IEEE Photon Technol Lett, 2016, 28(22), 2526

[29]

Zhou D, Liu F, Lu H, et al. High-temperature single photon detection performance of 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2014, 26(11), 1136

[30]

Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn J Appl Phys, 2015, 54, 040103

[31]

Katsuno T, Watanabe Y, Fujiwara H, et al. Analysis of surface morphology at leakage current sources of 4H-SiC Schottky barrier diodes. Appl Phys Lett, 2011, 98(22), 222111

[32]

Usami S, Ando Y, Tanaka A, et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl Phys Lett, 2018, 112(18), 182106

[33]

Yang Y, Chen Z. Identification of SiC polytypes by etched Si-face morphology. Mater Sci Semicond Proc, 2009, 12(3), 113

[34]

Wahab Q, Ellison A, Henry A, et al. Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes. Appl Phys Lett, 2000, 76(19), 2725

[35]

Chen B, Matsuhata H, Sekiguchi T, et al. Surface defects and accompanying imperfections in 4H-SiC: Optical, structural and electrical characterization. Acta Mater, 2012, 60(1), 51

[36]

Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett, 2006, 89(15), 151109

[37]

Ji X, Liu B, Xu Y, et al. Deep-level traps induced dark currents in extended wavelength InxGa1? xAs/InP photodetector. J Appl Phys, 2013, 114(22), 224502

[38]

Hurkx G A M, Klaassen D B M, Knuvers M P G. A new recombination model for device simulation including tunneling. IEEE Trans Electron Dev, 1992, 39(2), 331

[39]

Vilà A, Trenado J, Arbat A, et al. Characterization and simulation of avalanche photodiodes for next-generation colliders. Sens Actuators A, 2011, 172(1), 181

[40]

Stephen R, Forrest. Performance of InxGa1? x AsyP1– y photodiodes with dark current limited by diffusion, generation recombination, and tunneling. IEEE J Quantum Elect, 1981, 17(2), 217

[41]

Yang S, Zhou D, Cai X, et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger Mode. IEEE Trans Electron Devices, 2017, 64(11), 4532

[42]

Beck A L, Yang B, Guo X, et al. Edge breakdown in 4H-SiC avalanche photodiodes. IEEE J Quantum Electron, 2004, 40(3), 321

[43]

Davies R L, Gentry F E. Control of electric field at surface of P–N junction. IEEE Trans Electron Devices, 1964, 11(7), 313

[44]

Liu H, Zheng X, Zhou Q, et al. Double mesa sidewall silicon carbide avalanche photodiode. IEEE J Quantum Elect, 2009, 45(12), 1524

[45]

Guo X, Beck A L, Li X, et al. Study of reverse dark current in 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2005, 41(4), 562

[46]

Yamaguchi K, Teshima T, Mizuta H. Numerical analysis of an anomalous current assisted by locally generated deep traps in pn junctions. IEEE Trans Electron Devices, 1999, 46(6), 1159

[47]

Guo X, Beck A L, Li X, et al. Study of reverse dark current in 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2005, 41(4), 562

[48]

Shen S, Zhang Y, Yoo D, et al. Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD. IEEE Photon Technol Lett, 2007, 19(21), 1744

[49]

Yang S, Zhou D, Xu W, et al. 4H-SiC ultraviolet avalanche photodiodes with small gain slope and enhanced fill factor. IEEE Photonics J, 2017, 9(2), 1

[50]

Liu H, Mcintosh D, Bai X, et al. 4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency. IEEE Photon Technol Lett, 2008, 20(17–20), 1551

[51]

Cai X, Zhou D, Yang S, et al. 4H-SiC SACM avalanche photodiode with low breakdown voltage and high UV detection efficiency. IEEE Photonics J, 2016, 8(5), 1

[52]

Cha H, Soloviev S, Zelakiewicz S, et al. Temperature dependent characteristics of nonreach-through 4H-SiC separate absorption and multiplication APDs for UV detection. IEEE Sens J, 2008, 8(3), 233

[53]

Cha H, Soloviev S, Dunne G, et al. Comparison of 4H-SiC separate absorption and multiplication region avalanche photodiodes structures for UV detection. Proc 5th IEEE Conf Sensors, 2006, 5, 14

[54]

Vert A, Soloviev S, Fronheiser J, et al. Solar-blind 4H-SiC single-photon avalanche diode operating in Geiger Mode. IEEE Photon Technol Lett, 2008, 20(18), 1587

[55]

Soloviev S I, Vert A V, Fronheiser J, et al. Solar-blind 4H-SiC avalanche photodiodes. Mater Sci Forum, 2009, 615–617, 873

[56]

Sung W, Huang A Q, Baliga B J. Bevel junction termination extension-a new edge termination technique for 4H-SiC high-voltage devices. IEEE Electron Device Lett, 2015, 36(6), 594

[57]

Zhang Q, Callanan R, Das M K, et al. SiC power devices for microgrids. IEEE Trans Power Electron, 2010, 25(12), 2889

[58]

Yang S, Zhou D, Lu H, et al. 4H-SiC p–i–n ultraviolet avalanche photodiodes obtained by Al implantation. IEEE Photon Technol Lett, 2016, 28(11), 1185

[59]

Yang S, Zhou D, Lu H, et al. High-performance 4H-SiC p–i–n ultraviolet photodiode with p layer formed by Al implantation. IEEE Photon Technol Lett, 2016, 28(11), 1189

[60]

Sciuto A, Mazzillo M, Lenzi P, et al. Fully planar 4H-SiC avalanche photodiode with low breakdown voltage. IEEE Sens J, 2017, 17(14), 4460

[61]

Guo X Y, Beck A L, Campbell J C, et al. Spatial nonuniformity of 4H-SiC avalanche photodiodes at high gain. IEEE J Quantum Elect, 2005, 41(10), 1213

[62]

Cai X, Wu C, Lu H, et al. Single photon counting spatial uniformity of 4H-SiC APD characterized by SNOM-based mapping system. IEEE Photon Technol Lett, 2017, 29(19), 1603

[63]

Banc C, Bano E, Ouisse T, et al. Photon emission analysis of defect-free 4H-SiC pn diodes in avalanche regime. Mater Sci Forum, 2002, 389–393, 1293

[64]

Soloviev S I, Sandvik P M, Vertiatchikh A, et al. Observation of luminescence from defects in 4H-SiC APDs operating in avalanche breakdown. Mater Sci Forum, 2008, 600–603, 1211

[65]

Su L, Cai X, Lu H, et al. Spatial non-uniform hot carrier luminescence from 4H-SiC p–i–n avalanche photodiodes. IEEE Photon Technol Lett, 2019, 31(6), 447

[66]

Hatakeyama T, Watanabe T, Shinohe T, et al. Impact ionization coefficients of 4H silicon carbide. Appl Phys Lett, 2004, 85(8), 1380

[67]

Bellotti E, Nilsson H, Brennan K F, et al. Monte Carlo calculation of hole initiated impact ionization in 4H phase SiC. J Appl Phys, 2000, 87(8), 3864

[68]

Hjelm M, Nilsson H, Martinez A, et al. Monte Carlo study of high-field carrier transport in 4H-SiC including band-to-band tunneling. J Appl Phys, 2003, 93(2), 1099

[1]

Razeghi M. Short-wavelength solar-blind detectors-Status, prospects, and markets. Proc IEEE, 2002, 90(6), 1006

[2]

Campbell J C. Recent advances in avalanche photodiodes. J Lightwave Technol, 2016, 34(2), 278

[3]

Wang Y, Qian Y, Kong X. Photon counting based on solar-blind ultraviolet intensified complementary metal–oxide–semiconductor (ICMOS) for corona detection. IEEE Photonics J, 2018, 10(6), 1

[4]

Li B, Jiang W, Liang Y. Solar-blinded detector by UV radiation from missile plume. Aerosp Electron Warf, 2006, 22(06), 7

[5]

Chen H, Liu K, Hu L, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18(9), 493

[6]

Zamora D, Torres A. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples. Water Sci Technol, 2014, 69(11), 2305

[7]

Kumamoto Y, Fujita K, Smith N I, et al. Deep-UV biological imaging by lanthanide ion molecular protection. Biomed Opt Express, 2016, 7(1), 158

[8]

Razeghi M. Deep ultraviolet light-emitting diodes and photodetectors for UV communications. Proc SPIE, 2005, 5729, 30

[9]

Jackson J C, Phelan D, Morrison A P, et al. Toward integrated single-photon-counting microarrays. Opt Eng, 2002, 42(1), 112

[10]

Isoshima T, Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence. Rev Sci Instrum, 1995, 66(4), 2922

[11]

Munoz E, Monroy E, Pau J L, et al. III nitrides and UV detection. J Phys-Condens Mat, 2001, 13(32), 7115

[12]

Pau J L, Mcclintock R, Minder K, et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Appl Phys Lett, 2007, 91(4), 41104

[13]

Roschke M, Schwierz F. Electron mobility models for 4H, 6H, and 3C SiC. IEEE TRANS Electron Devices, 2001, 48(7), 1442-1447

[14]

Pearton S J, Zolper J C, Shul R J, et al. GaN: Processing, defects, and devices. J Appl Phys, 1999, 86(1), 1

[15]

Monroy E, Omn S F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Tech, 2003, 18(4), R33

[16]

Powell A R, Rowland L B. SiC materials-progress, status, and potential roadblocks. Proc IEEE, 2002, 90(6), 942

[17]

Yan F, Luo Y, Zhao J H, et al. 4H-SiC visible bling UV avalanche photodiode. Electron Lett, 1999, 35(11), 929

[18]

Xin X, Yan F, Yan F, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electron Lett, 2005, 41(4), 212

[19]

Beck A L, Karve G, Wang S, et al. Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2005, 17(7), 1507

[20]

Shaw G A, Siegel A M, Model J, et al. Deep UV photon-counting detectors and applications. Proc SPIE, 2009, 7320(73200J), 1

[21]

Beck A L, Guo X, Liu H, et al. Low dark count rate 4H-SiC Geiger mode avalanche photodiodes operated under gated quenching at 325 nm. Proc SPIE, 2006, 6372, 63720O-1

[22]

Li L, Zhou D, Lu H, et al. 4H-SiC avalanche photodiode linear array operating in Geiger Mode. IEEE Photonics J, 2017, 9(5), 6804207

[23]

Restelli A, Rech I, Maccagnani P, et al. Monolithic silicon matrix detector with 50 μm photon counting pixels. J Mod Optic, 2007, 54(2/3), 213

[24]

Cicek E, Vashaei Z, Mcclintock R, et al. Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl Phys Lett, 2010, 96(26), 261107

[25]

Bai X, Liu H, Mcintosh D C, et al. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2009, 45(3), 300

[26]

Vert A, Soloviev S, Sandvik P. SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection. Phys Status Solidi A, 2009, 206(10), 2468

[27]

Bai X, Mcintosh D, Liu H, et al. Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2007, 19(22), 1822

[28]

Li L, Zhou D, Liu F, et al. High fill-factor 4H-SiC avalanche photodiodes with partial trench isolation. IEEE Photon Technol Lett, 2016, 28(22), 2526

[29]

Zhou D, Liu F, Lu H, et al. High-temperature single photon detection performance of 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2014, 26(11), 1136

[30]

Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn J Appl Phys, 2015, 54, 040103

[31]

Katsuno T, Watanabe Y, Fujiwara H, et al. Analysis of surface morphology at leakage current sources of 4H-SiC Schottky barrier diodes. Appl Phys Lett, 2011, 98(22), 222111

[32]

Usami S, Ando Y, Tanaka A, et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl Phys Lett, 2018, 112(18), 182106

[33]

Yang Y, Chen Z. Identification of SiC polytypes by etched Si-face morphology. Mater Sci Semicond Proc, 2009, 12(3), 113

[34]

Wahab Q, Ellison A, Henry A, et al. Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes. Appl Phys Lett, 2000, 76(19), 2725

[35]

Chen B, Matsuhata H, Sekiguchi T, et al. Surface defects and accompanying imperfections in 4H-SiC: Optical, structural and electrical characterization. Acta Mater, 2012, 60(1), 51

[36]

Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett, 2006, 89(15), 151109

[37]

Ji X, Liu B, Xu Y, et al. Deep-level traps induced dark currents in extended wavelength InxGa1? xAs/InP photodetector. J Appl Phys, 2013, 114(22), 224502

[38]

Hurkx G A M, Klaassen D B M, Knuvers M P G. A new recombination model for device simulation including tunneling. IEEE Trans Electron Dev, 1992, 39(2), 331

[39]

Vilà A, Trenado J, Arbat A, et al. Characterization and simulation of avalanche photodiodes for next-generation colliders. Sens Actuators A, 2011, 172(1), 181

[40]

Stephen R, Forrest. Performance of InxGa1? x AsyP1– y photodiodes with dark current limited by diffusion, generation recombination, and tunneling. IEEE J Quantum Elect, 1981, 17(2), 217

[41]

Yang S, Zhou D, Cai X, et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger Mode. IEEE Trans Electron Devices, 2017, 64(11), 4532

[42]

Beck A L, Yang B, Guo X, et al. Edge breakdown in 4H-SiC avalanche photodiodes. IEEE J Quantum Electron, 2004, 40(3), 321

[43]

Davies R L, Gentry F E. Control of electric field at surface of P–N junction. IEEE Trans Electron Devices, 1964, 11(7), 313

[44]

Liu H, Zheng X, Zhou Q, et al. Double mesa sidewall silicon carbide avalanche photodiode. IEEE J Quantum Elect, 2009, 45(12), 1524

[45]

Guo X, Beck A L, Li X, et al. Study of reverse dark current in 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2005, 41(4), 562

[46]

Yamaguchi K, Teshima T, Mizuta H. Numerical analysis of an anomalous current assisted by locally generated deep traps in pn junctions. IEEE Trans Electron Devices, 1999, 46(6), 1159

[47]

Guo X, Beck A L, Li X, et al. Study of reverse dark current in 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2005, 41(4), 562

[48]

Shen S, Zhang Y, Yoo D, et al. Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD. IEEE Photon Technol Lett, 2007, 19(21), 1744

[49]

Yang S, Zhou D, Xu W, et al. 4H-SiC ultraviolet avalanche photodiodes with small gain slope and enhanced fill factor. IEEE Photonics J, 2017, 9(2), 1

[50]

Liu H, Mcintosh D, Bai X, et al. 4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency. IEEE Photon Technol Lett, 2008, 20(17–20), 1551

[51]

Cai X, Zhou D, Yang S, et al. 4H-SiC SACM avalanche photodiode with low breakdown voltage and high UV detection efficiency. IEEE Photonics J, 2016, 8(5), 1

[52]

Cha H, Soloviev S, Zelakiewicz S, et al. Temperature dependent characteristics of nonreach-through 4H-SiC separate absorption and multiplication APDs for UV detection. IEEE Sens J, 2008, 8(3), 233

[53]

Cha H, Soloviev S, Dunne G, et al. Comparison of 4H-SiC separate absorption and multiplication region avalanche photodiodes structures for UV detection. Proc 5th IEEE Conf Sensors, 2006, 5, 14

[54]

Vert A, Soloviev S, Fronheiser J, et al. Solar-blind 4H-SiC single-photon avalanche diode operating in Geiger Mode. IEEE Photon Technol Lett, 2008, 20(18), 1587

[55]

Soloviev S I, Vert A V, Fronheiser J, et al. Solar-blind 4H-SiC avalanche photodiodes. Mater Sci Forum, 2009, 615–617, 873

[56]

Sung W, Huang A Q, Baliga B J. Bevel junction termination extension-a new edge termination technique for 4H-SiC high-voltage devices. IEEE Electron Device Lett, 2015, 36(6), 594

[57]

Zhang Q, Callanan R, Das M K, et al. SiC power devices for microgrids. IEEE Trans Power Electron, 2010, 25(12), 2889

[58]

Yang S, Zhou D, Lu H, et al. 4H-SiC p–i–n ultraviolet avalanche photodiodes obtained by Al implantation. IEEE Photon Technol Lett, 2016, 28(11), 1185

[59]

Yang S, Zhou D, Lu H, et al. High-performance 4H-SiC p–i–n ultraviolet photodiode with p layer formed by Al implantation. IEEE Photon Technol Lett, 2016, 28(11), 1189

[60]

Sciuto A, Mazzillo M, Lenzi P, et al. Fully planar 4H-SiC avalanche photodiode with low breakdown voltage. IEEE Sens J, 2017, 17(14), 4460

[61]

Guo X Y, Beck A L, Campbell J C, et al. Spatial nonuniformity of 4H-SiC avalanche photodiodes at high gain. IEEE J Quantum Elect, 2005, 41(10), 1213

[62]

Cai X, Wu C, Lu H, et al. Single photon counting spatial uniformity of 4H-SiC APD characterized by SNOM-based mapping system. IEEE Photon Technol Lett, 2017, 29(19), 1603

[63]

Banc C, Bano E, Ouisse T, et al. Photon emission analysis of defect-free 4H-SiC pn diodes in avalanche regime. Mater Sci Forum, 2002, 389–393, 1293

[64]

Soloviev S I, Sandvik P M, Vertiatchikh A, et al. Observation of luminescence from defects in 4H-SiC APDs operating in avalanche breakdown. Mater Sci Forum, 2008, 600–603, 1211

[65]

Su L, Cai X, Lu H, et al. Spatial non-uniform hot carrier luminescence from 4H-SiC p–i–n avalanche photodiodes. IEEE Photon Technol Lett, 2019, 31(6), 447

[66]

Hatakeyama T, Watanabe T, Shinohe T, et al. Impact ionization coefficients of 4H silicon carbide. Appl Phys Lett, 2004, 85(8), 1380

[67]

Bellotti E, Nilsson H, Brennan K F, et al. Monte Carlo calculation of hole initiated impact ionization in 4H phase SiC. J Appl Phys, 2000, 87(8), 3864

[68]

Hjelm M, Nilsson H, Martinez A, et al. Monte Carlo study of high-field carrier transport in 4H-SiC including band-to-band tunneling. J Appl Phys, 2003, 93(2), 1099

[1]

Yang Ying, Lin Tao, Chen Zhiming. Effect of Growth Gas Flow Rate on the Defects Density of SiC Single Crystal. J. Semicond., 2008, 29(5): 851.

[2]

Huang Limin, Xie Jiachun, Liang Jin. High Quality Ultraviolet Photodetectors Based on Silicon Carbide. J. Semicond., 2005, 26(S1): 256.

[3]

Jiang Shouzhen, Xu Xian'gang, Li Juan, Chen Xiufang, Wang Yingmin, Ning Li'na, Hu Xiaobo, Wang Jiyang, Jiang Minhua. Recent Progress in SiC Monocrystal Growth and Wafer Machining. J. Semicond., 2007, 28(5): 810.

[4]

Tang Xiaoyan, Zhang Yimen, Zhang Yuming, Guo Hui, Zhang Lin. Direct Tunneling Effect in SiC Schottky Contacts. J. Semicond., 2006, 27(1): 174.

[5]

Zhang Lin, Zhang Yimen, Zhang Yuming, Tang Xiaoyan. Ohmic Contact on SiC Using n+ Polysilicon/n+ SiC Heterojunction. J. Semicond., 2006, 27(S1): 378.

[6]

Lü Hongliang, Zhang Yimen, Zhang Yuming, Che Yong, Wang Yuehu. Influence of the Trapping Effect on Temperature Characteristics in 4H-SiC MESFETs. J. Semicond., 2008, 29(2): 334.

[7]

Pu Hongbin, Chen Zhiming. Turn-On Mechanism of a Light-Activated SiC Heterojuntion Darlington HBT. J. Semicond., 2005, 26(S1): 143.

[8]

Chen Gang. n-Type 4H-SiC Ohmic Contact. J. Semicond., 2005, 26(S1): 273.

[9]

Chen Zhiming, Ren Ping, Pu Hongbin. Design and Simulation of a Light-Activated Darlington Transistor Based on a SiCGe/3C-SiC Hetero-Structure. J. Semicond., 2006, 27(2): 254.

[10]

Gao Jinxia, Zhang Yimen, Zhang Yuming. C-V Characteristic Distortion in the Pinch-Off Mode of a Buried Channel MOS Structure in 4H-SiC. J. Semicond., 2006, 27(7): 1259.

[11]

Li Lianbi, Chen Zhiming, Pu Hongbin, Lin Tao, Li Jia, Chen Chunlan, Li Qingmin. Structural Analysis of the SiCGe Epitaxial Layer Grown on SiC Substrate. J. Semicond., 2007, 28(S1): 123.

[12]

Jia Renxu, Zhang Yimen, Zhang Yuming, Guo Hui. Gas Fluid Modeling of SiC Epitaxial Growth in Chemical Vapor Deposition Processes. J. Semicond., 2007, 28(S1): 541.

[13]

Wang Lei, Sun Guosheng, Gao Xin, Zhao Wanshun, Zhang Yongxing, Zeng Yiping, Li Jinmin. LPCVD Homoepitaxial Growth on Off-Axis Si-Face 4H-SiC(0001) Substrates. J. Semicond., 2005, 26(S1): 113.

[14]

Bin Li, Xiaohong Yang, Weihong Yin, Qianqian Lü, Rong Cui, Qin Han. A high-speed avalanche photodiode. J. Semicond., 2014, 35(7): 074009. doi: 10.1088/1674-4926/35/7/074009

[15]

Wang Qi, Wang Ronghua, Xia Dongmei, Zheng Youdou, Han Ping, Yu Huiqiang, Mei Qin, Xie Zili, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Shi Yi, Zhang Rong. Effect of the Thickness of the Strained Si on Hall Mobility. J. Semicond., 2007, 28(S1): 130.

[16]

Zhang Fasheng, Li Xinran. Mo/Schottky Barrier Diodes on 4H-Silicon Carbide. J. Semicond., 2007, 28(3): 435.

[17]

Chen Sheng, , Li Zhihong, Zhang Guobing, Guo Hui, Wang Yu. Etching Characteristics of PECVD SiC. J. Semicond., 2006, 27(S1): 381.

[18]

Y. K. Sharma, Huaping Jiang, Changwei Zheng, Xiaoping Dai, Yangang Wang, I. Deviny. Impact of design and process variation on the fabrication of SiC diodes. J. Semicond., 2018, 39(11): 114001. doi: 10.1088/1674-4926/39/11/114001

[19]

Lin Tao, Li Qingmin, Li Lianbi, Yang Ying, Chen Zhiming. A Structural Investigation of 3C-SiC Film Hetero-Epitaxial Grown on 6H-SiC Substrate. J. Semicond., 2008, 29(5): 936.

[20]

Satoshi Kamiyama, Motoaki Iwaya, Tetsuya Takeuchi, Isamu Akasaki, Mikael Syvajarvi, Rositza Yakimova. Fluorescent SiC and its application to white light-emitting diodes. J. Semicond., 2011, 32(1): 013004. doi: 10.1088/1674-4926/32/1/013004

Search

Advanced Search >>

Article Metrics

Article views: 73 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 23 February 2019 Manuscript revised: 10 July 2019 Online: Accepted Manuscript: 12 September 2019 Uncorrected proof: 18 September 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤