J. Semicond. > Volume 40?>?Issue 6?> Article Number: 061002

合乐彩票

Yue Li 1, 2, , Ming Gong 3, 4, and Hualing Zeng 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Room temperature ferroelectric thin films are the key element of high-density nonvolatile memories in modern electronics. However, with the further miniaturization of the electronic devices beyond the Moore’s law, conventional ferroelectrics suffer great challenge arising from the critical thickness effect, where the ferroelectricity is unstable if the film thickness is reduced to nanometer or single atomic layer limit. Two-dimensional (2D) materials, thanks to their stable layered structure, saturate interfacial chemistry, weak interlayer couplings, and the benefit of preparing stable ultra-thin film at 2D limit, are promising for exploring 2D ferroelectricity and related device applications. Therefore, it provides an effective approach to overcome the limitation in conventional ferroelectrics with the study of 2D ferroelectricity in van der Waals (vdW) materials. In this review article, we briefly introduce recent progresses on 2D ferroelectricity in layered vdW materials. We will highlight the study on atomically thin α-In2Se3, which is an emergent ferroelectric semiconductor with the coupled in-plane and out-of-plane ferroelectricity. Furthermore, two prototype ferroelectric devices based on ferroelectric α-In2Se3 will also be reviewed.

Key words: electric polarization2D materials2D ferroelectrics

Abstract: Room temperature ferroelectric thin films are the key element of high-density nonvolatile memories in modern electronics. However, with the further miniaturization of the electronic devices beyond the Moore’s law, conventional ferroelectrics suffer great challenge arising from the critical thickness effect, where the ferroelectricity is unstable if the film thickness is reduced to nanometer or single atomic layer limit. Two-dimensional (2D) materials, thanks to their stable layered structure, saturate interfacial chemistry, weak interlayer couplings, and the benefit of preparing stable ultra-thin film at 2D limit, are promising for exploring 2D ferroelectricity and related device applications. Therefore, it provides an effective approach to overcome the limitation in conventional ferroelectrics with the study of 2D ferroelectricity in van der Waals (vdW) materials. In this review article, we briefly introduce recent progresses on 2D ferroelectricity in layered vdW materials. We will highlight the study on atomically thin α-In2Se3, which is an emergent ferroelectric semiconductor with the coupled in-plane and out-of-plane ferroelectricity. Furthermore, two prototype ferroelectric devices based on ferroelectric α-In2Se3 will also be reviewed.

Key words: electric polarization2D materials2D ferroelectrics



References:

[1]

de Araujo C A P, Cuchiaro J D, McMillan L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995, 374(6523), 627

[2]

Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923), 63

[3]

Lu H, Lipatov A, Ryu S, et al. Ferroelectric tunnel junctions with graphene electrodes. Nat Commun, 2014, 5, 5518

[4]

Scott J F, Paz de Araujo C A. Ferroelectric memories. Science, 1989, 246(4936), 1400

[5]

Chu M W, Szafraniak I, Scholz R, et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat Mater, 2004, 3(2), 87

[6]

Stengel M, Vanderbilt D, Spaldin N A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat Mater, 2009, 8, 392

[7]

Lu H, Liu X, Burton J D, et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv Mater, 2012, 24(9), 1209

[8]

Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931), 506

[9]

Gao P, Zhang Z Y, Li M Q, et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat Commun, 2017, 8, 15549

[10]

Xi X X, Wang Z F, Zhao W W, et al. Ising pairing in superconducting NbSe2 atomic layers. Nat Phys, 2015, 12, 139

[11]

Xi X X, Zhao L, Wang Z F, et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotech, 2015, 10, 765

[12]

Zeng H L, Dai J F, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotech, 2012, 7, 490

[13]

Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729), 94

[14]

Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6, 183

[15]

Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2 : a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13), 136805

[16]

Zeng H L, Cui X D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev, 2015, 44(9), 2629

[17]

Belianinov A, He Q, Dziaugys A, et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett, 2015, 15(6), 3808

[18]

Liu F C, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7, 12357

[19]

Chang K, Liu J W, Lin H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296), 274

[20]

Ding W J, Zhu J B, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat Commun, 2017, 8, 14956

[21]

Zhou Y, Wu D, Zhu Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17(9), 5508

[22]

Cui C J, Hu W J, Yan X X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18(2), 1253

[23]

Poh S M, Tan S J R, Wang H, et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett, 2018, 18(10), 6340

[24]

Wan S Y, Li Y, Li W, et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 2018, 10(31), 14885

[25]

Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 2018, 120(22), 227601

[26]

Xue F, Hu W, Lee K C, et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv Funct Mater, 2018, 0(0), 1803738

[27]

Xue F, Zhang J, Hu W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano, 2018, 12(5), 4976

[28]

Zheng C, Yu L, Zhu L, et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci Adv, 2018, 4(7), eaar7720

[29]

Wan S Y, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv Funct Mater, 2018, 29, 1808606

[30]

Si M W, Gao S J, Qiu G, et all. A ferroelectric semiconductor field-effect transistor. arXiv: 1812.02933

[31]

Tao X, Gu Y. Crystalline–crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett, 2013, 13(8), 3501

[32]

Wu D, Pak A J, Liu Y N, et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett, 2015, 15(12), 8136

[33]

Zhou J D, Zeng Q S, Lv D H, et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett, 2015, 15(10), 6400

[34]

Jacobs-Gedrim R B, Shanmugam M, Jain N, et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2014, 8(1), 514

[35]

Nilanthy B, Christopher R S, Emily F S, et al. Quantum confinement and photoresponsivity of β -In2Se3 nanosheets grown by physical vapour transport. 2D Mater, 2016, 3(2), 025030

[36]

Choi M S, Cheong B K, Ra C H, et al. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv Mater, 2017, 29(42), 1703568

[37]

Lewandowska R, Bacewicz R, Filipowicz J, et al. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 2001, 36(15), 2577

[38]

Debbichi L, Eriksson O, Lebègue S. Two-dimensional indium selenides compounds: an ab initio study. J Phys Chem Lett, 2015, 6(15), 3098

[39]

Zhou S, Tao X, Gu Y. Thickness-dependent thermal conductivity of suspended two-dimensional single-crystal In2Se3 layers grown by chemical vapor deposition. J Phys Chem C, 2016, 120(9), 4753

[40]

Eisuke T, Kojiro O, Hiroshi I. Low voltage operation of nonvolatile metal–ferroelectric–metal–insulator–semiconductor (MFMIS) field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn J Appl Phys, 2001, 40(4S), 2917

[41]

Eisuke T, Gen F, Hiroshi I. Electrical properties of metal–ferroelectric–insulator–semiconductor (MFIS) and metal–ferroelectric–metal–insulator–semiconductor (MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6/SiON buffer layer. Jpn J Appl Phys, 2000, 39(4S), 2125

[1]

de Araujo C A P, Cuchiaro J D, McMillan L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995, 374(6523), 627

[2]

Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923), 63

[3]

Lu H, Lipatov A, Ryu S, et al. Ferroelectric tunnel junctions with graphene electrodes. Nat Commun, 2014, 5, 5518

[4]

Scott J F, Paz de Araujo C A. Ferroelectric memories. Science, 1989, 246(4936), 1400

[5]

Chu M W, Szafraniak I, Scholz R, et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat Mater, 2004, 3(2), 87

[6]

Stengel M, Vanderbilt D, Spaldin N A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat Mater, 2009, 8, 392

[7]

Lu H, Liu X, Burton J D, et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv Mater, 2012, 24(9), 1209

[8]

Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931), 506

[9]

Gao P, Zhang Z Y, Li M Q, et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat Commun, 2017, 8, 15549

[10]

Xi X X, Wang Z F, Zhao W W, et al. Ising pairing in superconducting NbSe2 atomic layers. Nat Phys, 2015, 12, 139

[11]

Xi X X, Zhao L, Wang Z F, et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotech, 2015, 10, 765

[12]

Zeng H L, Dai J F, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotech, 2012, 7, 490

[13]

Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729), 94

[14]

Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6, 183

[15]

Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2 : a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13), 136805

[16]

Zeng H L, Cui X D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev, 2015, 44(9), 2629

[17]

Belianinov A, He Q, Dziaugys A, et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett, 2015, 15(6), 3808

[18]

Liu F C, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7, 12357

[19]

Chang K, Liu J W, Lin H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296), 274

[20]

Ding W J, Zhu J B, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat Commun, 2017, 8, 14956

[21]

Zhou Y, Wu D, Zhu Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17(9), 5508

[22]

Cui C J, Hu W J, Yan X X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18(2), 1253

[23]

Poh S M, Tan S J R, Wang H, et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett, 2018, 18(10), 6340

[24]

Wan S Y, Li Y, Li W, et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 2018, 10(31), 14885

[25]

Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 2018, 120(22), 227601

[26]

Xue F, Hu W, Lee K C, et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv Funct Mater, 2018, 0(0), 1803738

[27]

Xue F, Zhang J, Hu W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano, 2018, 12(5), 4976

[28]

Zheng C, Yu L, Zhu L, et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci Adv, 2018, 4(7), eaar7720

[29]

Wan S Y, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv Funct Mater, 2018, 29, 1808606

[30]

Si M W, Gao S J, Qiu G, et all. A ferroelectric semiconductor field-effect transistor. arXiv: 1812.02933

[31]

Tao X, Gu Y. Crystalline–crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett, 2013, 13(8), 3501

[32]

Wu D, Pak A J, Liu Y N, et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett, 2015, 15(12), 8136

[33]

Zhou J D, Zeng Q S, Lv D H, et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett, 2015, 15(10), 6400

[34]

Jacobs-Gedrim R B, Shanmugam M, Jain N, et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2014, 8(1), 514

[35]

Nilanthy B, Christopher R S, Emily F S, et al. Quantum confinement and photoresponsivity of β -In2Se3 nanosheets grown by physical vapour transport. 2D Mater, 2016, 3(2), 025030

[36]

Choi M S, Cheong B K, Ra C H, et al. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv Mater, 2017, 29(42), 1703568

[37]

Lewandowska R, Bacewicz R, Filipowicz J, et al. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 2001, 36(15), 2577

[38]

Debbichi L, Eriksson O, Lebègue S. Two-dimensional indium selenides compounds: an ab initio study. J Phys Chem Lett, 2015, 6(15), 3098

[39]

Zhou S, Tao X, Gu Y. Thickness-dependent thermal conductivity of suspended two-dimensional single-crystal In2Se3 layers grown by chemical vapor deposition. J Phys Chem C, 2016, 120(9), 4753

[40]

Eisuke T, Kojiro O, Hiroshi I. Low voltage operation of nonvolatile metal–ferroelectric–metal–insulator–semiconductor (MFMIS) field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn J Appl Phys, 2001, 40(4S), 2917

[41]

Eisuke T, Gen F, Hiroshi I. Electrical properties of metal–ferroelectric–insulator–semiconductor (MFIS) and metal–ferroelectric–metal–insulator–semiconductor (MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6/SiON buffer layer. Jpn J Appl Phys, 2000, 39(4S), 2125

[1]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[2]

Xu Wang, Lei Xu, Yun Jiang, Zhouyang Yin, Christopher C. S. Chan, Chaoyong Deng, Robert A. Taylor. III–V compounds as single photon emitters. J. Semicond., 2019, 40(7): 071906. doi: 10.1088/1674-4926/40/7/071906

[3]

Weisheng Li, Hongkai Ning, Zhihao Yu, Yi Shi, Xinran Wang. Reducing the power consumption of two-dimensional logic transistors. J. Semicond., 2019, 40(9): 091002. doi: 10.1088/1674-4926/40/9/091002

[4]

Jingbo Li, Xinran Wang. Preface to the Special Topic on 2D Materials and Devices. J. Semicond., 2017, 38(3): 031001. doi: 10.1088/1674-4926/38/3/031001

[5]

Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

[6]

Chuanbo Li, Ming Li. 2D metamaterials coherently steer nonlinear valley photons of 2D semiconductor. J. Semicond., 2019, 40(6): 060201. doi: 10.1088/1674-4926/40/6/060201

[7]

Jianlu Wang. A novel spin-FET based on 2D antiferromagnet. J. Semicond., 2019, 40(2): 020401. doi: 10.1088/1674-4926/40/2/020401

[8]

Li Yanhui, Li Weihua. 2D Numerical Simulation of Sacrificial Layer Etching. J. Semicond., 2006, 27(7): 1321.

[9]

Shen Guangping, Wu Jian, Zhang Hua, Qin Ming, Huang Qing’an. Design of a 2D Thermal Wind Sensor Based on MEMS Process. J. Semicond., 2007, 28(11): 1830.

[10]

Zhijie Wang. Unique interfacial thermodynamics of few-layer 2D MoS. J. Semicond., 2019, 40(6): 060202. doi: 10.1088/1674-4926/40/6/060202

[11]

Deng Ning, Xiao Hong, Chen Peiyi, Li Zhijian. Kinetic monte Carlo simulation of initial nucleation stage of 2D Ge islands. J. Semicond., 2003, 24(S1): 56.

[12]

A. Hezabra, N. A. Abdeslam, N. Sengouga, M. C. E. Yagoub. 2D study of AlGaN/AlN/GaN/AlGaN HEMTs’ response to traps. J. Semicond., 2019, 40(2): 022802. doi: 10.1088/1674-4926/40/2/022802

[13]

Yu Hejun, Yu Jinzhong, Chen Shaowu. An All-E-Beam Lithography Process for the Patterningof 2D Photonic Crystal Waveguide Devices. J. Semicond., 2006, 27(11): 1894.

[14]

Ji Feng, Xu Jingping, Lai P T, Chen Weibing, Li Yanping. 2D Threshold-Voltage Model for High-k Gate-Dielectric MOSFETs. J. Semicond., 2006, 27(10): 1725.

[15]

Cun Huanyao, Tan Renbing, Wang Rongli, Bai Han, Zhang Xi, Hu Jiaguang, Zhang Jin. Calculation of Band Gap Structures of 2D Square Lattice Photonic Crystals Using Plan Wave Expansion Method. J. Semicond., 2006, 27(S1): 64.

[16]

Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. J. Semicond., 2019, 40(4): 041901. doi: 10.1088/1674-4926/40/4/041901

[17]

Wei Kangliang, Liu Xiaoyan, Du Gang, Han Ruqi. Simulation of carrier transport in heterostructures using the 2D self-consistent full-band ensemble Monte Carlo method. J. Semicond., 2010, 31(8): 084004. doi: 10.1088/1674-4926/31/8/084004

[18]

Ping-Heng Tan, Lijun Zhang, Lun Dai, Shuyun Zhou. Preface to the Special Issue on 2D-Materials-Related Physical Properties and Optoelectronic Devices. J. Semicond., 2019, 40(6): 060101. doi: 10.1088/1674-4926/40/6/060101

[19]

Shuaiqin Wu, Guangjian Wu, Xudong Wang, Yan Chen, Tie Lin, Hong Shen, Weida Hu, Xiangjian Meng, Jianlu Wang, Junhao Chu. A gate-free MoS2 phototransistor assisted by ferroelectrics. J. Semicond., 2019, 40(9): 092002. doi: 10.1088/1674-4926/40/9/092002

[20]

Huifang Xu, Yuehua Dai, Ning Li, Jianbin Xu. A 2-D semi-analytical model of double-gate tunnel field-effect transistor. J. Semicond., 2015, 36(5): 054002. doi: 10.1088/1674-4926/36/5/054002

Search

Advanced Search >>

GET CITATION

Y Li, M Gong, H L Zeng, Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor[J]. J. Semicond., 2019, 40(6): 061002. doi: 10.1088/1674-4926/40/6/061002.

Export: BibTex EndNote

Article Metrics

Article views: 481 Times PDF downloads: 81 Times Cited by: 0 Times

History

Manuscript received: 31 March 2019 Manuscript revised: 30 April 2019 Online: Accepted Manuscript: 14 May 2019 Uncorrected proof: 29 May 2019 Published: 05 June 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤