J. Semicond. > Volume 40?>?Issue 8?> Article Number: 081509

合乐彩票

Baoxing Zhai 1, , Juan Du 2, , Xueping Li 3, , Congxin Xia 1, , and Zhongming Wei 4, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Since the successful fabrication of two-dimensional (2D) ferromagnetic (FM) monolayer CrI3 and Cr2Ge2Te6, 2D FM materials are becoming an exciting research topic in condensed matter physics and materials fields, as they provide a good platform to explore the fundamental physical properties of magnetic materials under 2D limit. In this review, we summarize the theoretical research progress of intrinsic 2D FM materials and related van der Waals heterostructures (vdWHs) including their electronic structures, magnetism, Curie temperature, valley polarization, and band alignment. Moreover, we also summarize recent researches on the methods that used to regulate the above properties of 2D FM materials and vdWHs, such as defects, doping, strain, electric field and interlayer coupling. These studies show that 2D FM materials have broad application prospects in spintronics and valleytronics. However, there are still many problems waiting to be solved on the way to practical application.

Key words: 2D FM materialsheterostructureCurie temperature

Abstract: Since the successful fabrication of two-dimensional (2D) ferromagnetic (FM) monolayer CrI3 and Cr2Ge2Te6, 2D FM materials are becoming an exciting research topic in condensed matter physics and materials fields, as they provide a good platform to explore the fundamental physical properties of magnetic materials under 2D limit. In this review, we summarize the theoretical research progress of intrinsic 2D FM materials and related van der Waals heterostructures (vdWHs) including their electronic structures, magnetism, Curie temperature, valley polarization, and band alignment. Moreover, we also summarize recent researches on the methods that used to regulate the above properties of 2D FM materials and vdWHs, such as defects, doping, strain, electric field and interlayer coupling. These studies show that 2D FM materials have broad application prospects in spintronics and valleytronics. However, there are still many problems waiting to be solved on the way to practical application.

Key words: 2D FM materialsheterostructureCurie temperature



References:

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666

[2]

Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133

[3]

Zheng H, Yang B, Wang D, et al. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl Phys Lett, 2014, 104, 132403

[4]

Hashmi A, Hong J. Transition metal doped phosphorene: first-principles study. J Phys Chem C, 2015, 119, 9198

[5]

Du J, Xia C, An Y, et al. Tunable electronic structures and magnetism in arsenene nanosheets via transition metal doping. J Mater Sci, 2016, 51, 9504

[6]

Yazyev O V, Helm L. Defect-induced magnetism in graphene. Phys Rev B, 2007, 75, 125408

[7]

Nair R R, Sepioni M, Tsai I L, et al. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 2012, 8, 199

[8]

Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270

[9]

Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265

[10]

Song T, Cai X, Tu M W Y, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360, 1214

[11]

Seyler K L, Zhong D, Klein D R, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat Phys, 2018, 14, 277

[12]

Cardoso C, Soriano D, García-Martínez N A, et al. Van der Waals spin valves. Phys Rev Lett, 2018, 121, 067701

[13]

Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406

[14]

Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549

[15]

Lin G T, Luo X, Chen F C, et al. Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI3. Appl Phys Lett, 2018, 112, 072405

[16]

Xu C, Feng J, Xiang H, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 2018, 4, 57

[17]

Wang K, Hu T, Jia F, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl Phys Lett, 2019, 114, 092405

[18]

Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94

[19]

Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289

[20]

O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125

[21]

Zheng S, Huang C, Yu T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J Phys Chem Lett, 2019, 2733

[22]

Tian S, Zhang J-F, Li C, et al. Ferromagnetic van der Waals crystal VI3. J Am Chem Soc, 2019, 141, 5326

[23]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499, 419

[24]

Yao S, Wang E, Zhou S. Van der Waals heterostructures, a new world in the field of two-dimensional materials. Physics, 2017, 5, 322

[25]

Unuchek D, Ciarrocchi A, Avsar A, et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560, 340

[26]

Seyler K L, Rivera P, Yu H, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567, 66

[27]

Jin C, Regan E C, Yan A, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567, 76

[28]

Xia C, Xiong W, Du J, et al. Type-I transition metal dichalcogenides lateral homojunctions: layer thickness and external electric field effects. Small, 2018, 14, 1800365

[29]

Xia C, Du J, Li M, et al. Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys Rev Appl, 2018, 10, 054064

[30]

Qi J, Li X, Niu Q, et al. Giant and tunable valley degeneracy splitting in MoTe2. Phys Rev B, 2015, 92, 121403

[31]

Liang X, Deng L, Huang F, et al. The magnetic proximity effect and electrical field tunable valley degeneracy in MoS2/EuS van der Waals heterojunctions. Nanoscale, 2017, 9, 9502

[32]

Xu L, Yang M, Shen L, et al. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. Phys Rev B, 2018, 97, 041405

[33]

Jiang P, Li L, Liao Z, et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett, 2018, 18, 3844

[34]

Jin Y, Wang R, Xu H. Recipe for Dirac phonon states with a quantized valley berry phase in two-dimensional hexagonal lattices. Nano Lett, 2018, 18, 7755

[35]

Zhao Y, Lin L, Zhou Q, et al. Surface vacancy-induced switchable electric polarization and enhanced ferromagnetism in monolayer metal trihalides. Nano Lett, 2018, 18, 2943

[36]

Wang H, Fan F, Zhu S, et al. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL Europhys Lett, 2016, 114, 47001

[37]

Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc Natl Acad Sci, 2018, 115, 8511

[38]

Webster L, Yan J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 2018, 98, 144411

[39]

Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater, 2018, 5, 042002

[40]

Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018, 13, 246

[41]

Zhu Y, Kong X, Rhone T D, et al. Systematic search for two-dimensional ferromagnetic materials. Phys Rev Mater, 2018, 2, 081001

[42]

Miao N, Xu B, Zhu L, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140, 2417

[43]

So much more to know. Science, 2005, 309, 78b

[44]

Jiang Z, Wang P, Xing J, et al. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl Mater Interfaces, 2018, 10, 39032

[45]

Huang C, Feng J, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc, 2018, 140, 11519

[46]

Li X, Yang J. Realizing two-dimensional magnetic semiconductors with enhanced Curie temperature by antiaromatic ring based organometallic frameworks. J Am Chem Soc, 2019, 141, 109

[47]

Xiong W, Xia C, Du J, et al. Electrostatic gating dependent multiple-band alignments in a high-temperature ferromagnetic Mg(OH)2/VS2 heterobilayer. Phys Rev B, 2017, 95, 245408

[48]

Du J, Xia C, Xiong W, et al. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale, 2017, 9, 17585

[49]

Zhang Z, Ni X, Huang H, et al. Valley splitting in the van der Waals heterostructure WSe2/CrI3: The role of atom superposition. Phys Rev B, 2019, 99, 115441

[50]

Farooq M U, Hong J. Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures. npj 2D Mater Appl, 2019, 3, 3

[51]

Zhang J, Zhao B, Zhou T, et al. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys Rev B, 2018, 97, 085401

[52]

Zhang H, Qin W, Chen M, et al. Converting a two-dimensional ferromagnetic insulator into a high-temperature quantum anomalous Hall system by means of an appropriate surface modification. Phys Rev B, 2019, 99, 165410

[53]

Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363, 706

[54]

Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344, 1489

[55]

Seyler K L, Zhong D, Huang B, et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 2018, 18, 3823

[56]

Aivazian G, Gong Z, Jones A M, et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat Phys, 2015, 11, 148

[57]

Peng R, Ma Y, Zhang S, et al. Valley polarization in janus single-layer MoSSe via magnetic doping. J Phys Chem Lett, 2018, 9, 3612

[58]

Pei Q, Zhou B, Mi W, et al. Triferroic material and electrical control of valley degree of freedom. ACS Appl Mater Interfaces, 2019, 11, 12675

[59]

Sun W, Wang W, Chen D, et al. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale, 2019, 11, 9931

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666

[2]

Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133

[3]

Zheng H, Yang B, Wang D, et al. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl Phys Lett, 2014, 104, 132403

[4]

Hashmi A, Hong J. Transition metal doped phosphorene: first-principles study. J Phys Chem C, 2015, 119, 9198

[5]

Du J, Xia C, An Y, et al. Tunable electronic structures and magnetism in arsenene nanosheets via transition metal doping. J Mater Sci, 2016, 51, 9504

[6]

Yazyev O V, Helm L. Defect-induced magnetism in graphene. Phys Rev B, 2007, 75, 125408

[7]

Nair R R, Sepioni M, Tsai I L, et al. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 2012, 8, 199

[8]

Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270

[9]

Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265

[10]

Song T, Cai X, Tu M W Y, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360, 1214

[11]

Seyler K L, Zhong D, Klein D R, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat Phys, 2018, 14, 277

[12]

Cardoso C, Soriano D, García-Martínez N A, et al. Van der Waals spin valves. Phys Rev Lett, 2018, 121, 067701

[13]

Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406

[14]

Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549

[15]

Lin G T, Luo X, Chen F C, et al. Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI3. Appl Phys Lett, 2018, 112, 072405

[16]

Xu C, Feng J, Xiang H, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 2018, 4, 57

[17]

Wang K, Hu T, Jia F, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl Phys Lett, 2019, 114, 092405

[18]

Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94

[19]

Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289

[20]

O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125

[21]

Zheng S, Huang C, Yu T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J Phys Chem Lett, 2019, 2733

[22]

Tian S, Zhang J-F, Li C, et al. Ferromagnetic van der Waals crystal VI3. J Am Chem Soc, 2019, 141, 5326

[23]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499, 419

[24]

Yao S, Wang E, Zhou S. Van der Waals heterostructures, a new world in the field of two-dimensional materials. Physics, 2017, 5, 322

[25]

Unuchek D, Ciarrocchi A, Avsar A, et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560, 340

[26]

Seyler K L, Rivera P, Yu H, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567, 66

[27]

Jin C, Regan E C, Yan A, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567, 76

[28]

Xia C, Xiong W, Du J, et al. Type-I transition metal dichalcogenides lateral homojunctions: layer thickness and external electric field effects. Small, 2018, 14, 1800365

[29]

Xia C, Du J, Li M, et al. Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys Rev Appl, 2018, 10, 054064

[30]

Qi J, Li X, Niu Q, et al. Giant and tunable valley degeneracy splitting in MoTe2. Phys Rev B, 2015, 92, 121403

[31]

Liang X, Deng L, Huang F, et al. The magnetic proximity effect and electrical field tunable valley degeneracy in MoS2/EuS van der Waals heterojunctions. Nanoscale, 2017, 9, 9502

[32]

Xu L, Yang M, Shen L, et al. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate. Phys Rev B, 2018, 97, 041405

[33]

Jiang P, Li L, Liao Z, et al. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett, 2018, 18, 3844

[34]

Jin Y, Wang R, Xu H. Recipe for Dirac phonon states with a quantized valley berry phase in two-dimensional hexagonal lattices. Nano Lett, 2018, 18, 7755

[35]

Zhao Y, Lin L, Zhou Q, et al. Surface vacancy-induced switchable electric polarization and enhanced ferromagnetism in monolayer metal trihalides. Nano Lett, 2018, 18, 2943

[36]

Wang H, Fan F, Zhu S, et al. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. EPL Europhys Lett, 2016, 114, 47001

[37]

Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc Natl Acad Sci, 2018, 115, 8511

[38]

Webster L, Yan J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 2018, 98, 144411

[39]

Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater, 2018, 5, 042002

[40]

Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018, 13, 246

[41]

Zhu Y, Kong X, Rhone T D, et al. Systematic search for two-dimensional ferromagnetic materials. Phys Rev Mater, 2018, 2, 081001

[42]

Miao N, Xu B, Zhu L, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140, 2417

[43]

So much more to know. Science, 2005, 309, 78b

[44]

Jiang Z, Wang P, Xing J, et al. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl Mater Interfaces, 2018, 10, 39032

[45]

Huang C, Feng J, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc, 2018, 140, 11519

[46]

Li X, Yang J. Realizing two-dimensional magnetic semiconductors with enhanced Curie temperature by antiaromatic ring based organometallic frameworks. J Am Chem Soc, 2019, 141, 109

[47]

Xiong W, Xia C, Du J, et al. Electrostatic gating dependent multiple-band alignments in a high-temperature ferromagnetic Mg(OH)2/VS2 heterobilayer. Phys Rev B, 2017, 95, 245408

[48]

Du J, Xia C, Xiong W, et al. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale, 2017, 9, 17585

[49]

Zhang Z, Ni X, Huang H, et al. Valley splitting in the van der Waals heterostructure WSe2/CrI3: The role of atom superposition. Phys Rev B, 2019, 99, 115441

[50]

Farooq M U, Hong J. Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures. npj 2D Mater Appl, 2019, 3, 3

[51]

Zhang J, Zhao B, Zhou T, et al. Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures. Phys Rev B, 2018, 97, 085401

[52]

Zhang H, Qin W, Chen M, et al. Converting a two-dimensional ferromagnetic insulator into a high-temperature quantum anomalous Hall system by means of an appropriate surface modification. Phys Rev B, 2019, 99, 165410

[53]

Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363, 706

[54]

Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344, 1489

[55]

Seyler K L, Zhong D, Huang B, et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 2018, 18, 3823

[56]

Aivazian G, Gong Z, Jones A M, et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat Phys, 2015, 11, 148

[57]

Peng R, Ma Y, Zhang S, et al. Valley polarization in janus single-layer MoSSe via magnetic doping. J Phys Chem Lett, 2018, 9, 3612

[58]

Pei Q, Zhou B, Mi W, et al. Triferroic material and electrical control of valley degree of freedom. ACS Appl Mater Interfaces, 2019, 11, 12675

[59]

Sun W, Wang W, Chen D, et al. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale, 2019, 11, 9931

[1]

Wei Kangliang, Liu Xiaoyan, Du Gang, Han Ruqi. Simulation of carrier transport in heterostructures using the 2D self-consistent full-band ensemble Monte Carlo method. J. Semicond., 2010, 31(8): 084004. doi: 10.1088/1674-4926/31/8/084004

[2]

Li Tong, Pei Zhijun, Sun Shoumei, Ma Xingbing, Feng Liying, Zhang Ming, Yan Hui. Effect of Thickness on the Rectifying Properties of La0.85Sr0.15MnO3/TiO2 Heterostructures. J. Semicond., 2008, 29(9): 1794.

[3]

Jiang Yanfeng, Wang Jianping. Preparation of (SiFe)C DMS Based 4H-SiC Substrate. J. Semicond., 2008, 29(8): 1436.

[4]

He Huan, Qin Fuwen, Wu Aimin, Wang Ye'an, Dai Youyong, Jiang Xin, Xu Yin, Gu Biao. Characteristics of GaMnN Film Grown by ECR-PEMOCVD. J. Semicond., 2007, 28(7): 1053.

[5]

Hailong Wang, Jialin Ma, Jianhua Zhao. Giant modulation of magnetism in (Ga,Mn)As ultrathin films via electric field. J. Semicond., 2019, 40(9): 092501. doi: 10.1088/1674-4926/40/9/092501

[6]

Hemant Pardeshi, Sudhansu Kumar Pati, Godwin Raj, N Mohankumar, Chandan Kumar Sarkar. Effect of underlap and gate length on device performance of an AlInN/GaN underlap MOSFET. J. Semicond., 2012, 33(12): 124001. doi: 10.1088/1674-4926/33/12/124001

[7]

L. Bruno Chandrasekar, M. Karunakaran, K. Gnanasekar. Spin-dependent tunneling of light and heavy holes with electric and magnetic fields. J. Semicond., 2018, 39(11): 112001. doi: 10.1088/1674-4926/39/11/112001

[8]

Jingbo Li, Xinran Wang. Preface to the Special Topic on 2D Materials and Devices. J. Semicond., 2017, 38(3): 031001. doi: 10.1088/1674-4926/38/3/031001

[9]

Na Chen, Kaixuan Fang, Hongxia Zhang, Yingqi Zhang, Wenjian Liu, Kefu Yao, Zhengjun Zhang. Amorphous magnetic semiconductors with Curie temperatures above room temperature. J. Semicond., 2019, 40(8): 081510. doi: 10.1088/1674-4926/40/8/081510

[10]

Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

[11]

Yang Yan, Wang Wenbo, Hao Yue. Ohmic Contact to an AlGaN/GaN Heterostructure. J. Semicond., 2006, 27(10): 1823.

[12]

Chuanbo Li, Ming Li. 2D metamaterials coherently steer nonlinear valley photons of 2D semiconductor. J. Semicond., 2019, 40(6): 060201. doi: 10.1088/1674-4926/40/6/060201

[13]

Songyang Yuan, Shaolin Zhang. Recent progress on gas sensors based on graphene-like 2D/2D nanocomposites. J. Semicond., 2019, 40(11): 111608. doi: 10.1088/1674-4926/40/11/111608

[14]

Zhao Bo, Li Qingshan, Zhang Ning, Chen Da, Zheng Xuegang. Optical and Electrical Properties of ZnO/PS Heterostructure. J. Semicond., 2006, 27(7): 1217.

[15]

Liu Bingce, Liu Cihui, Yi Bo. Grain boundary layer behavior in ZnO/Si heterostructure. J. Semicond., 2010, 31(3): 032003. doi: 10.1088/1674-4926/31/3/032003

[16]

Dawei Yan, Fuxue Wang, Zhaomin Zhu, Jianmin Cheng, Xiaofeng Gu. Capacitance and conductance dispersion in AlGaN/GaN heterostructure. J. Semicond., 2013, 34(1): 014003. doi: 10.1088/1674-4926/34/1/014003

[17]

Jianlu Wang. A novel spin-FET based on 2D antiferromagnet. J. Semicond., 2019, 40(2): 020401. doi: 10.1088/1674-4926/40/2/020401

[18]

Li Yanhui, Li Weihua. 2D Numerical Simulation of Sacrificial Layer Etching. J. Semicond., 2006, 27(7): 1321.

[19]

Shen Guangping, Wu Jian, Zhang Hua, Qin Ming, Huang Qing’an. Design of a 2D Thermal Wind Sensor Based on MEMS Process. J. Semicond., 2007, 28(11): 1830.

[20]

Zhijie Wang. Unique interfacial thermodynamics of few-layer 2D MoS. J. Semicond., 2019, 40(6): 060202. doi: 10.1088/1674-4926/40/6/060202

Search

Advanced Search >>

GET CITATION

B X Zhai, J Du, X P Li, C X Xia, Z M Wei, 合乐彩票[J]. J. Semicond., 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509.

Export: BibTex EndNote

Article Metrics

Article views: 373 Times PDF downloads: 126 Times Cited by: 0 Times

History

Manuscript received: 02 June 2019 Manuscript revised: 08 July 2019 Online: Accepted Manuscript: 11 July 2019 Uncorrected proof: 06 August 2019 Published: 09 August 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤