J. Semicond. > Volume 40?>?Issue 8?> Article Number: 081506

Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR

Yilun Gu 1, , Shengli Guo 1, and Fanlong Ning 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Diluted magnetic semiconductors (DMSs) that possess both properties of semiconductors and ferromagnetism, have attracted a lot of attentions due to its potential applications for spin-sensitive electronic devices. Recently, a series of bulk form DMSs isostructural to iron-based superconductors have been reported, which can be readily investigated by microscopic experimental techniques such as nuclear magnetic resonance (NMR) and muon spin rotation (μSR). The measurements have demonstrated that homogeneous ferromagnetism is achieved in these DMSs. In this review article, we summarize experimental evidences from both NMR and μSR measurements. NMR results have shown that carriers facilitate the interactions between distant Mn atoms, while μSR results indicate that these bulk form DMSs and (Ga,Mn)As share a common mechanism for the ferromagnetic exchange interactions.

Key words: diluted magnetic semiconductorsmuon spin rotationnuclear magnetic resonanceferromagnetism

Abstract: Diluted magnetic semiconductors (DMSs) that possess both properties of semiconductors and ferromagnetism, have attracted a lot of attentions due to its potential applications for spin-sensitive electronic devices. Recently, a series of bulk form DMSs isostructural to iron-based superconductors have been reported, which can be readily investigated by microscopic experimental techniques such as nuclear magnetic resonance (NMR) and muon spin rotation (μSR). The measurements have demonstrated that homogeneous ferromagnetism is achieved in these DMSs. In this review article, we summarize experimental evidences from both NMR and μSR measurements. NMR results have shown that carriers facilitate the interactions between distant Mn atoms, while μSR results indicate that these bulk form DMSs and (Ga,Mn)As share a common mechanism for the ferromagnetic exchange interactions.

Key words: diluted magnetic semiconductorsmuon spin rotationnuclear magnetic resonanceferromagnetism



References:

[1]

Von Molnar S, Read D. New materials for semiconductor spin-electronics. Proc IEEE, 2003, 91(5), 715

[2]

Matthias B T, Bozorth R M, Van Vleck J H. Ferromagnetic interaction in EuO. Phys Rev Lett, 1961, 7(5), 160

[3]

Menyuk N, Dwight K, Arnott R J, et al. Ferromagnetism in CdCr2Se4 and CdCr2S4. J Appl Phys, 1966, 37(3), 1387

[4]

Twardowski A, Swagten H J M, de Jonge W J M, et al. Magnetic behavior of the diluted magnetic semiconductor Zn1– xMnxSe. Phys Rev B, 1987, 36(13), 7013

[5]

Ferrand D, Cibert J, Wasiela A, et al. Carrier-induced ferromagnetism in p-Zn1– xMn xTe. Phys Rev B, 2001, 63(8), 085201

[6]

Aggarwal R L, Jasperson S N, Stankiewicz J, et al. Magnetoreflectance at the band edge in Cd1– xMnxSe. Phys Rev B, 1983, 28(12), 6907

[7]

Haury A, Wasiela A, Arnoult A, et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys Rev Lett, 1997, 79(3), 511

[8]

Ohno H, Shen A, Matsukura F, et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69(3), 363

[9]

Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281(5379), 951

[10]

Jungwirth T, Sinova J, Ma?ek J, et al. Theory of ferromagnetic (III,Mn)V semiconductors. Rev Mod Phys, 2006, 78(3), 809

[11]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9(12), 965

[12]

Wang M, Campion R P, Rushforth A W, et al. Achieving high curie temperature in (Ga, Mn)As. Appl Phys Lett, 2008, 93(13), 132103

[13]

Chen L, Yan S, Xu P F, et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 2009, 95(18), 182505

[14]

Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11(7), 2584

[15]

Tanaka M, Ohya S, Hai P N. Recent progress in III–V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport. Appl Phys Rev, 2014, 1(1), 011102

[16]

Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn, Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88(8), 081203

[17]

Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2(1), 422

[18]

Ding C, Man H, Qin C, et al. (La1– xBax)(Zn1– xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88(4), 041102

[19]

Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ’122’ iron-based superconductors. Nat Commun, 2013, 4(1), 1442

[20]

Guo S, Man H, Wang K, et al. Ba(Zn, Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99(15), 155201

[21]

Zhao K, Chen B, Zhao G, et al. Ferromagnetism at 230 K in (Ba0:7K0:3)(Zn0:85Mn0:15)2As2 diluted magnetic semiconductor. Chin Scie Bull, 2014, 59(21), 2524

[22]

Guo S, Ning F L. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of fe-based superconductors. Chin Phys B, 2018, 27(9), 097502

[23]

Dunsiger S R, Carlo J P, Goko T, et al. Spatially homogeneous ferromagnetism of (Ga, Mn)As. Nat Mater, 2010, 9(4), 299

[24]

Masek J, Kudrnovsk J, Mca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn, Mn)As. Phys Rev Lett, 2007, 98(6), 067202

[25]

Han W, Chen B J, Gu B, et al. Li(Cd, Mn)P: a new cadmium based diluted ferromagnetic semiconductor with independent spin & charge doping. Sci Rep, 2019, 9(1), 7490

[26]

Wang Q, Man H, Ding C, et al. Li1.1(Zn1– xCrx)As: Cr doped I–II–V diluted magnetic semiconductors in bulk form. J Appl Phys, 2014, 115(8), 083917

[27]

Guo S L, Zhao Y, Man H Y, et al. μSR investigation of a new diluted magnetic semiconductor Li(Zn, Mn, Cu)As with Mn and Cu codoping at the same Zn sites. J Phys: Condens Matter, 2016, 28(36), 366001

[28]

Ding C, Qin C, Man H, et al. NMR investigation of the diluted magnetic semiconductor Li(Zn1– xMnx)P (x = 0. Phys Rev B, 2013, 88(4), 041108

[29]

Ning F L, Man H, Gong X, et al. Suppression of TC by overdoped Li in the diluted ferromagnetic semiconductor Li1+ y(Zn1- xMnx)P: A μSR investigation. Phys Rev B, 2014, 90(8), 085123

[30]

Mazin I I, Singh D J, Johannes M D, et al. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1– xFx. Phys Rev Lett, 2008, 101(5), 057003

[31]

Ding C, Gong X, Man H, et al. The suppression of Curie temperature by Sr doping in diluted ferromagnetic semiconductor (La1– xSrx)(Zn1– yMny)AsO. EPL, 2014, 107(1), 17004

[32]

Han W, Zhao K, Wang X, et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to 1111 type iron pnictide superconductors. Sci Chin Phys, Mechan Astron, 2013, 56(11), 2026

[33]

Chen B, Deng Z, Li W, et al. New fluoride-arsenide diluted magnetic semiconductor (Ba, K)F(Zn, Mn)As with independent spin and charge doping. Sci Rep, 2016, 6(1), 36578

[34]

Yang X, Li Y, Shen C,et al. Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200K. Appl Phys Lett, 2013, 103(2), 022410

[35]

Guo S, Man H, Gong X, et al. (Ba1– xKx)(Cu2– xMnx)Se2: A copper-based bulk form diluted magnetic semiconductor with orthorhombic BaCu2S2-type structure. J Magn Magn Mater, 2016, 400, 295

[36]

Zhao K, Chen B J, Deng Z, et al. (Ca, Na)(Zn, Mn)2As2: A new spin and charge doping decoupled diluted ferromagnetic semiconductor. J Appl Phys, 2014, 116(16), 163906

[37]

Chen B, Deng Z, Li W, et al. (Sr1– xNax)(Cd1– xMnx)2As2: A new charge and spin doping decoupled diluted magnetic semiconductors with CaAl2Si2-type structure. J Appl Phys, 2016, 120(8), 083902

[38]

Yang X, Li Y, Zhang P, et al. K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. J Appl Phys, 2013, 114(22), 223905

[39]

Man H, Ding C, Guo S, et al. Ba(Zn1–2xMnxCox)2As2: a bulk form diluted magnetic semiconductor with n-type carriers. arXiv: 1403.4019, 2014

[40]

Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94(15), 155202

[41]

Suzuki H, Zhao K, Shibata G, et al. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1– xKx(Zn1– yMny)2As2. Phys Rev B, 2015, 91(14), 140401

[42]

Suzuki H, Zhao G Q, Zhao K, et al. Fermi surfaces and p-d hybridization in the diluted magnetic semiconductor Ba1– xKx(Zn1– yMny)2As2 studied by soft X-ray angle-resolved photoemission spectroscopy. Phys Rev B, 2015, 92(23), 235120

[43]

Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1– xKx)(Zn1– yMny)2As2 with independent spin and charge doping. Physl Rev B, 2016, 93(22), 224403

[44]

Sun F, Zhao G Q, Escanhoela C A, et al. Hole doping and pressure effects on the II–II–V-based diluted magnetic semiconductor (Ba1– xKx)(Zn1– yMny)2As2. Phys Rev B, 2017, 95(9), 094412

[45]

Surmach M A, Chen B J, Deng Z, et al. Weak doping dependence of the antiferromagnetic coupling between nearest-neighbor Mn2+ spins in (Ba1– xKx)(Zn1– yMny)2As2. Phys Rev B, 2018, 97(10), 104418

[1]

Von Molnar S, Read D. New materials for semiconductor spin-electronics. Proc IEEE, 2003, 91(5), 715

[2]

Matthias B T, Bozorth R M, Van Vleck J H. Ferromagnetic interaction in EuO. Phys Rev Lett, 1961, 7(5), 160

[3]

Menyuk N, Dwight K, Arnott R J, et al. Ferromagnetism in CdCr2Se4 and CdCr2S4. J Appl Phys, 1966, 37(3), 1387

[4]

Twardowski A, Swagten H J M, de Jonge W J M, et al. Magnetic behavior of the diluted magnetic semiconductor Zn1– xMnxSe. Phys Rev B, 1987, 36(13), 7013

[5]

Ferrand D, Cibert J, Wasiela A, et al. Carrier-induced ferromagnetism in p-Zn1– xMn xTe. Phys Rev B, 2001, 63(8), 085201

[6]

Aggarwal R L, Jasperson S N, Stankiewicz J, et al. Magnetoreflectance at the band edge in Cd1– xMnxSe. Phys Rev B, 1983, 28(12), 6907

[7]

Haury A, Wasiela A, Arnoult A, et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys Rev Lett, 1997, 79(3), 511

[8]

Ohno H, Shen A, Matsukura F, et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69(3), 363

[9]

Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281(5379), 951

[10]

Jungwirth T, Sinova J, Ma?ek J, et al. Theory of ferromagnetic (III,Mn)V semiconductors. Rev Mod Phys, 2006, 78(3), 809

[11]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9(12), 965

[12]

Wang M, Campion R P, Rushforth A W, et al. Achieving high curie temperature in (Ga, Mn)As. Appl Phys Lett, 2008, 93(13), 132103

[13]

Chen L, Yan S, Xu P F, et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 2009, 95(18), 182505

[14]

Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11(7), 2584

[15]

Tanaka M, Ohya S, Hai P N. Recent progress in III–V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport. Appl Phys Rev, 2014, 1(1), 011102

[16]

Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn, Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88(8), 081203

[17]

Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2(1), 422

[18]

Ding C, Man H, Qin C, et al. (La1– xBax)(Zn1– xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88(4), 041102

[19]

Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ’122’ iron-based superconductors. Nat Commun, 2013, 4(1), 1442

[20]

Guo S, Man H, Wang K, et al. Ba(Zn, Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99(15), 155201

[21]

Zhao K, Chen B, Zhao G, et al. Ferromagnetism at 230 K in (Ba0:7K0:3)(Zn0:85Mn0:15)2As2 diluted magnetic semiconductor. Chin Scie Bull, 2014, 59(21), 2524

[22]

Guo S, Ning F L. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of fe-based superconductors. Chin Phys B, 2018, 27(9), 097502

[23]

Dunsiger S R, Carlo J P, Goko T, et al. Spatially homogeneous ferromagnetism of (Ga, Mn)As. Nat Mater, 2010, 9(4), 299

[24]

Masek J, Kudrnovsk J, Mca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn, Mn)As. Phys Rev Lett, 2007, 98(6), 067202

[25]

Han W, Chen B J, Gu B, et al. Li(Cd, Mn)P: a new cadmium based diluted ferromagnetic semiconductor with independent spin & charge doping. Sci Rep, 2019, 9(1), 7490

[26]

Wang Q, Man H, Ding C, et al. Li1.1(Zn1– xCrx)As: Cr doped I–II–V diluted magnetic semiconductors in bulk form. J Appl Phys, 2014, 115(8), 083917

[27]

Guo S L, Zhao Y, Man H Y, et al. μSR investigation of a new diluted magnetic semiconductor Li(Zn, Mn, Cu)As with Mn and Cu codoping at the same Zn sites. J Phys: Condens Matter, 2016, 28(36), 366001

[28]

Ding C, Qin C, Man H, et al. NMR investigation of the diluted magnetic semiconductor Li(Zn1– xMnx)P (x = 0. Phys Rev B, 2013, 88(4), 041108

[29]

Ning F L, Man H, Gong X, et al. Suppression of TC by overdoped Li in the diluted ferromagnetic semiconductor Li1+ y(Zn1- xMnx)P: A μSR investigation. Phys Rev B, 2014, 90(8), 085123

[30]

Mazin I I, Singh D J, Johannes M D, et al. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1– xFx. Phys Rev Lett, 2008, 101(5), 057003

[31]

Ding C, Gong X, Man H, et al. The suppression of Curie temperature by Sr doping in diluted ferromagnetic semiconductor (La1– xSrx)(Zn1– yMny)AsO. EPL, 2014, 107(1), 17004

[32]

Han W, Zhao K, Wang X, et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to 1111 type iron pnictide superconductors. Sci Chin Phys, Mechan Astron, 2013, 56(11), 2026

[33]

Chen B, Deng Z, Li W, et al. New fluoride-arsenide diluted magnetic semiconductor (Ba, K)F(Zn, Mn)As with independent spin and charge doping. Sci Rep, 2016, 6(1), 36578

[34]

Yang X, Li Y, Shen C,et al. Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200K. Appl Phys Lett, 2013, 103(2), 022410

[35]

Guo S, Man H, Gong X, et al. (Ba1– xKx)(Cu2– xMnx)Se2: A copper-based bulk form diluted magnetic semiconductor with orthorhombic BaCu2S2-type structure. J Magn Magn Mater, 2016, 400, 295

[36]

Zhao K, Chen B J, Deng Z, et al. (Ca, Na)(Zn, Mn)2As2: A new spin and charge doping decoupled diluted ferromagnetic semiconductor. J Appl Phys, 2014, 116(16), 163906

[37]

Chen B, Deng Z, Li W, et al. (Sr1– xNax)(Cd1– xMnx)2As2: A new charge and spin doping decoupled diluted magnetic semiconductors with CaAl2Si2-type structure. J Appl Phys, 2016, 120(8), 083902

[38]

Yang X, Li Y, Zhang P, et al. K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. J Appl Phys, 2013, 114(22), 223905

[39]

Man H, Ding C, Guo S, et al. Ba(Zn1–2xMnxCox)2As2: a bulk form diluted magnetic semiconductor with n-type carriers. arXiv: 1403.4019, 2014

[40]

Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94(15), 155202

[41]

Suzuki H, Zhao K, Shibata G, et al. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1– xKx(Zn1– yMny)2As2. Phys Rev B, 2015, 91(14), 140401

[42]

Suzuki H, Zhao G Q, Zhao K, et al. Fermi surfaces and p-d hybridization in the diluted magnetic semiconductor Ba1– xKx(Zn1– yMny)2As2 studied by soft X-ray angle-resolved photoemission spectroscopy. Phys Rev B, 2015, 92(23), 235120

[43]

Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1– xKx)(Zn1– yMny)2As2 with independent spin and charge doping. Physl Rev B, 2016, 93(22), 224403

[44]

Sun F, Zhao G Q, Escanhoela C A, et al. Hole doping and pressure effects on the II–II–V-based diluted magnetic semiconductor (Ba1– xKx)(Zn1– yMny)2As2. Phys Rev B, 2017, 95(9), 094412

[45]

Surmach M A, Chen B J, Deng Z, et al. Weak doping dependence of the antiferromagnetic coupling between nearest-neighbor Mn2+ spins in (Ba1– xKx)(Zn1– yMny)2As2. Phys Rev B, 2018, 97(10), 104418

[1]

Guoqiang Zhao, Zheng Deng, Changqing Jin. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping. J. Semicond., 2019, 40(8): 081505. doi: 10.1088/1674-4926/40/8/081505

[2]

Chang Yongqin, Yu Dapeng, Long Yi. Fabrication and Magnetic Property of Mn Doped ZnO Nanowires. J. Semicond., 2007, 28(S1): 296.

[3]

Yongde Hao, Legui Zhou, Jun Li, Zuoqi Hu. Structural, morphological and magnetic properties of Zn1-xCoxO prepared by sol-gel and hydrothermal method combined. J. Semicond., 2016, 37(11): 113002. doi: 10.1088/1674-4926/37/11/113002

[4]

Hu Liangjun, Chen Yonghai, Ye Xiaoling, Wang Zhanguo. Magnetic and Optical Properties of InAs/GaAs Quantum Dots Doped by High Energy Mn Implantation. J. Semicond., 2007, 28(S1): 84.

[5]

Zhang Fuqiang, Chen Nuofu, Yang Ruixia, Wei Huaipeng, Liu Xianglin, Liu Zhikai, Yang Shaoyan, Chai Chunlin. Magnetic and Structural Properties of Room-Temperature Ferromagnetic Al2O3∶Mn. J. Semicond., 2005, 26(12): 2390.

[6]

Zhao Jing, Xia Qinglin, Li Jinmin. Ferromagnetism in Fe-doped CuO nanopowder. J. Semicond., 2012, 33(1): 013001. doi: 10.1088/1674-4926/33/1/013001

[7]

Khizar-ul Haq, M. Irfan, Muhammad Masood, Murtaza Saleem, Tahir Iqbal, Ishaq Ahmad, M. A. Khan, M. Zaffar, Muhammad Irfan. Enhanced room temperature ferromagnetism in Cr-doped ZnO nanoparticles prepared by auto-combustion method. J. Semicond., 2018, 39(4): 043001. doi: 10.1088/1674-4926/39/4/043001

[8]

Cao Qiang, Liu Guolei, Deng Jiangxia, Xing Pengfei, Tian Yufeng, Chen Yanxue, Yan Shishen, Mei Liangmo. Single Crystalline Co-Doped ZnO Thin Films by Molecular Beam Epitaxy and Room Temperature Ferromagnetism. J. Semicond., 2007, 28(S1): 282.

[9]

Xiu Xiangqian, Li Binbin, Zhang Rong, Chen Lin, Xie Zili, Han Ping, Shi Yi, Zheng Youdou. Property of Ni-Doped ZnO-Based DMSs. J. Semicond., 2007, 28(S1): 145.

[10]

D. Lalitha, A. John Peter. Effect of p-d exchange with an itinerant carrier in a GaMnAs quantum dot. J. Semicond., 2013, 34(7): 072001. doi: 10.1088/1674-4926/34/7/072001

[11]

Deng Jiajun, Zhao Jianhua, Jiang Chunping, Niu Zhichuan, Yang Fuhua, Wu Xiaoguang, Zheng Houzhi. Enhancement of Ferromagnetic Transition Temperature in (GaMn)As by Post-Growth Annealing. J. Semicond., 2005, 26(S1): 42.

[12]

Liu Huilian, Yang Jinghai, Zhang Yongjun, Wang Yaxin, Wei Maobin, Zhao Liyou. Room Temperature Ferromagnetism in Nanostructure Cu-Doped ZnO. J. Semicond., 2008, 29(11): 2256.

[13]

Tao Zhikuo, Zhang Rong, Xiu Xiangqian, Cui Xugao, Li Li, Li Xin, Xie ZiLi, Zheng Youdou, Zheng Rongkun, Simon P Ringer. Microstructural properties of over-doped GaN-based diluted magnetic semiconductors grown by MOCVD. J. Semicond., 2012, 33(7): 073002. doi: 10.1088/1674-4926/33/7/073002

[14]

Tomasz Dietl, Alberta Bonanni, Hideo Ohno. Families of magnetic semiconductors — an overview. J. Semicond., 2019, 40(8): 080301. doi: 10.1088/1674-4926/40/8/080301

[15]

Qiang Cao, Shishen Yan. The predicaments and expectations in development of magnetic semiconductors. J. Semicond., 2019, 40(8): 081501. doi: 10.1088/1674-4926/40/8/081501

[16]

Lin Chen, Jianhua Zhao, Dieter Weiss, Christian H. Back, Fumihiro Matsukura, Hideo Ohno. Magnetization dynamics and related phenomena in semiconductors with ferromagnetism. J. Semicond., 2019, 40(8): 081502. doi: 10.1088/1674-4926/40/8/081502

[17]

Xinyu Liu, Dahai Wei, Jianhua Zhao. Preface to the Special Issue on Challenges and Possibilities of Magnetic Semiconductors. J. Semicond., 2019, 40(8): 080101. doi: 10.1088/1674-4926/40/8/080101

[18]

Fanlong Ning. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Semicond., 2019, 40(8): 080201. doi: 10.1088/1674-4926/40/8/080201

[19]

Na Chen, Kaixuan Fang, Hongxia Zhang, Yingqi Zhang, Wenjian Liu, Kefu Yao, Zhengjun Zhang. Amorphous magnetic semiconductors with Curie temperatures above room temperature. J. Semicond., 2019, 40(8): 081510. doi: 10.1088/1674-4926/40/8/081510

[20]

Wang Zewen, Zhang Long, Gu Zhi, Jie Wanqi. Etching Behavior of Microdefect in Diluted Magnetic Semiconductor H90.89 Mn0.11Te. J. Semicond., 2007, 28(S1): 561.

Search

Advanced Search >>

GET CITATION

Y L Gu, S L Guo, F L Ning, Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR[J]. J. Semicond., 2019, 40(8): 081506. doi: 10.1088/1674-4926/40/8/081506.

Export: BibTex EndNote

Article Metrics

Article views: 57 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 03 June 2019 Manuscript revised: 08 July 2019 Online: Accepted Manuscript: 15 July 2019 Uncorrected proof: 06 August 2019 Published: 09 August 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤