J. Semicond. > Volume 40?>?Issue 8?> Article Number: 081503

合乐彩票

Sanghoon Lee 1, , , Sunjae Chung 1, , Hakjoon Lee 1, , Xinyu Liu 2, , M. Dobrowolska 2, and J. K. Furdyna 2,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: This paper describes interlayer exchange coupling (IEC) phenomena in ferromagnetic multilayer structures, focusing on the unique IEC features observed in ferromagnetic semiconductor (Ga,Mn)As-based systems. The dependence of IEC on the structural parameters, such as non-magnetic spacer thickness, number of magnetic layers, and carrier density in the systems has been investigated by using magnetotransport measurements. The samples in the series show both a typical anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR)-like effects indicating realization of both ferromagnetic (FM) and antiferromagnetic (AFM) IEC in (Ga,Mn)As-based multilayer structures. The results revealed that the presence of carriers in the non-magnetic spacer is an important factor to realize AFM IEC in this system. The studies further reveal that the IEC occurs over a much longer distance than predicted by current theories, strongly suggesting that the IEC in (Ga,Mn)As-based multilayers is a long-range interaction. Due to the long-range nature of IEC in the (Ga,Mn)As-based systems, the next nearest neighbor (NNN) IEC cannot be ignored and results in multi-step transitions during magnetization reversal that correspond to diverse spin configurations in the system. The strength of NNN IEC was experimentally determined by measuring minor loops that correspond to magnetization flips in specific (Ga,Mn)As layer in the multilayer system.

Key words: thin filmcrystalferromagnetic semiconductorinterlayer coupling

Abstract: This paper describes interlayer exchange coupling (IEC) phenomena in ferromagnetic multilayer structures, focusing on the unique IEC features observed in ferromagnetic semiconductor (Ga,Mn)As-based systems. The dependence of IEC on the structural parameters, such as non-magnetic spacer thickness, number of magnetic layers, and carrier density in the systems has been investigated by using magnetotransport measurements. The samples in the series show both a typical anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR)-like effects indicating realization of both ferromagnetic (FM) and antiferromagnetic (AFM) IEC in (Ga,Mn)As-based multilayer structures. The results revealed that the presence of carriers in the non-magnetic spacer is an important factor to realize AFM IEC in this system. The studies further reveal that the IEC occurs over a much longer distance than predicted by current theories, strongly suggesting that the IEC in (Ga,Mn)As-based multilayers is a long-range interaction. Due to the long-range nature of IEC in the (Ga,Mn)As-based systems, the next nearest neighbor (NNN) IEC cannot be ignored and results in multi-step transitions during magnetization reversal that correspond to diverse spin configurations in the system. The strength of NNN IEC was experimentally determined by measuring minor loops that correspond to magnetization flips in specific (Ga,Mn)As layer in the multilayer system.

Key words: thin filmcrystalferromagnetic semiconductorinterlayer coupling



References:

[1]

Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39(7), 4828

[2]

Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61(21), 2472

[3]

Parkin S S P, Farrow R F C, Marks R F, et al. Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers. Phys Rev Lett, 1994, 73(8), 1190

[4]

Bloemen P J H, van Kesteren H W, Swagten H J M, et al. Oscillatory interlayer exchange coupling in Co/Ru multilayers and bilayers. Phys Rev B, 1994, 50(18), 13505

[5]

Borchers J A, Dura J A, Unguris J, et al. Observation of antiparallel magnetic order in weakly coupled Co/Cu multilayers. Phys Rev Lett, 1999, 82(13), 2796

[6]

Parkin S S P. Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys Rev Lett, 1991, 67(25), 3598

[7]

Parkin S S P, More N, Roche K. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett, 1990, 64(19), 2304

[8]

Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B, 1996, 54(13), 9353

[9]

Miron I M, Garello K, Gaudin G, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 2011, 476, 189

[10]

Slonczewski J C. Current-driven excitations of magnetic multilayers. J Magn Magn Mater, 1996, 159, L1

[11]

Koshihara S, Oiwa A, Hirasawa M, et al. Ferromagnetic order induced by photogenerated carriers in magnetic III–V semiconductor heterostructures of (In, Mn)As/GaSb. Phys Rev Lett, 1997, 78(24), 4617

[12]

Lee H, Choi S, Lee S, et al. Effect of light illumination on the [100] uniaxial magnetic anisotropy of (Ga,Mn)As film. Solid State Commun, 2014, 192, 27

[13]

Lee S, Shin D Y, Chung S J, et al. Tunable quaternary states in ferromagnetic semiconductor (Ga,Mn)As single layer for memory devices. Appl Phys Lett, 2007, 90(15), 152113

[14]

Liu X, Sasaki Y, Furdyna J K. Ferromagnetic resonance in Ga1? xMn xAs effects of magnetic anisotropy. Phys Rev B, 2003, 67(20), 205204

[15]

Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408(6815), 944

[16]

Lee H, Lee S, Choi S, et al. Interlayer exchange coupling in MBE-grown (Ga,Mn)As-based multilayer systems. J Cryst Growth, 2017, 477, 188

[17]

Bac S K, Lee H, Kee S, et al. Effects on magnetic properties of (Ga,Mn)As induced by proximity of topological insulator Bi2Se3. J Electron Mater, 2018, 47(8), 4308

[18]

Chang J, Bhoi S, Lee K J, et al. Effects of film thickness and annealing on the magnetic properties of (Ga,Mn)AsP ferromagnetic semiconductor. J Cryst Growth, 2019, 512, 112

[19]

Yuldashev S U, Im K, Yalishev V S, et al. Effect of additional nonmagnetic acceptor doping on the resistivity peak and the Curie temperature of Ga1? xMn xAs epitaxial layers. Appl Phys Lett, 2003, 82(8), 1206

[20]

Chung S, Lee S, Chung J H, et al. Giant magnetoresistance and long-range antiferromagnetic interlayer exchange coupling in (Ga,Mn)As/GaAs: Be multilayers. Phys Rev B, 2010, 82(5), 054420

[21]

Chung S, Lee S, Yoo T, et al. Determination of interlayer exchange fields acting on individual (Ga,Mn)As layers in (Ga,Mn)As/GaAs multilayers. Jpn J Appl Phys, 2015, 54(3), 033001

[22]

Lee H, Lee S, Choi S, et al. Antiferromagnetic interlayer exchange coupling in ferromagnetic (Ga,Mn)As/GaAs: Be multilayers. IEEE Trans Magn, 2015, 51(11), 2400604

[23]

Leiner J, Lee H, Yoo T, et al. Observation of antiferromagnetic interlayer exchange coupling in a Ga1? xMnxAs/GaAs: Be/Ga1? xMn xAs trilayer structure. Phys Rev B, 2010, 82(19), 195205

[24]

Baxter D V, Ruzmetov D, Scherschligt J, et al. Anisotropic magnetoresistance in Ga1? xMn xAs. Phys Rev B, 2002, 65(21), 212407

[25]

Wang K Y, Edmonds K W, Campion R P, et al. Anisotropic magnetoresistance and magnetic anisotropy in high-quality (Ga,Mn)As films. Phys Rev B, 2005, 72(8), 085201

[26]

Shin D Y, Chung S J, Lee S, et al. Temperature dependence of magnetic anisotropy in ferromagnetic (Ga,Mn)As films: Investigation by the planar Hall effect. Phys Rev B, 2007, 76(3), 035327

[27]

Grünberg P A. Exchange anisotropy, interlayer exchange coupling and GMR in research and application. Sens Actuators A, 2001, 91(1), 153

[28]

Giddings A D, Jungwirth T, Gallagher B L. (Ga,Mn)As based superlattices and the search for antiferromagnetic interlayer coupling. Phys Rev B, 2008, 78(16), 165312

[29]

Sankowski P, Kacman P. Interlayer exchange coupling in (Ga,Mn)As-based superlattices. Phys Rev B, 2005, 71(20), 201303

[30]

Sza?owski K, Balcerzak T. Antiferromagnetic interlayer coupling in diluted magnetic thin films with RKKY interaction. Phys Rev B, 2009, 79(21), 214430

[31]

Chung J H, Chung S J, Lee S, et al. Carrier-mediated antiferromagnetic interlayer exchange coupling in diluted magnetic semiconductor multilayers Ga1? xMn xAs: GaAs: Be. Phys Rev Lett, 2008, 101(23), 237202

[32]

Chung J H, Lin J, Furdyna J K, et al. Investigation of weak interlayer exchange coupling in (Ga,Mn)As/GaAs superlattices with insulating nonmagnetic spacers. J Appl Phys, 2011, 110(1), 013912

[33]

K?pa H, Le V K, Brown C M, et al. Probing hole-induced ferromagnetic exchange in magnetic semiconductors by inelastic neutron scattering. Phys Rev Lett, 2003, 91(8), 087205

[34]

Rhyne J J, Lin J, Furdyna J K, et al. Anomalous antiferromagnetic coupling in [ZnTe?MnTe] superlattices. J Magn Magn Mater, 1998, 177–181, 1195

[35]

Unguris J, Celotta R J, Pierce D T. Observation of two different oscillation periods in the exchange coupling of Fe/Cr/Fe(100). Phys Rev Lett, 1991, 67(1), 140

[36]

Bruno P, Chappert C. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys Rev Lett, 1991, 67(12), 1602

[37]

Bruno P, Chappert C. Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Phys Rev B, 1992, 46(1), 261

[38]

Yafet Y. Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas. Phys Rev B, 1987, 36(7), 3948

[39]

Chen B, Xu H, Ma C, et al. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal. Science, 2017, 357(6347), 191

[40]

Chung S, Lee S, Yoo T, et al. The critical role of next-nearest-neighbor interlayer interaction in the magnetic behavior of magnetic/non-magnetic multilayers. New J Phys, 2013, 15(12), 123025

[41]

Eid K F, Stone M B, Ku K C, et al. Exchange biasing of the ferromagnetic semiconductor Ga1? xMn xAs. Appl Phys Lett, 2004, 85(9), 1556

[42]

Yu K M, Walukiewicz W, Wojtowicz T, et al. Effect of film thickness on the incorporation of Mn interstitials in Ga1? xMn xAs. Appl Phys Lett, 2005, 86(4), 042102

[43]

Lee H, Bac S K, Lee S, et al. Experimental determination of next-nearest-neighbor interlayer exchange coupling in ferromagnetic (Ga,Mn)As/GaAs: Be multilayers. Appl Phys Lett, 2015, 107(19), 192403

[44]

Han J H, Lee H W. Interlayer exchange coupling between next nearest neighbor layers. Phys Rev B, 2012, 86(17), 174426

[1]

Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39(7), 4828

[2]

Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61(21), 2472

[3]

Parkin S S P, Farrow R F C, Marks R F, et al. Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers. Phys Rev Lett, 1994, 73(8), 1190

[4]

Bloemen P J H, van Kesteren H W, Swagten H J M, et al. Oscillatory interlayer exchange coupling in Co/Ru multilayers and bilayers. Phys Rev B, 1994, 50(18), 13505

[5]

Borchers J A, Dura J A, Unguris J, et al. Observation of antiparallel magnetic order in weakly coupled Co/Cu multilayers. Phys Rev Lett, 1999, 82(13), 2796

[6]

Parkin S S P. Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys Rev Lett, 1991, 67(25), 3598

[7]

Parkin S S P, More N, Roche K. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett, 1990, 64(19), 2304

[8]

Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B, 1996, 54(13), 9353

[9]

Miron I M, Garello K, Gaudin G, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 2011, 476, 189

[10]

Slonczewski J C. Current-driven excitations of magnetic multilayers. J Magn Magn Mater, 1996, 159, L1

[11]

Koshihara S, Oiwa A, Hirasawa M, et al. Ferromagnetic order induced by photogenerated carriers in magnetic III–V semiconductor heterostructures of (In, Mn)As/GaSb. Phys Rev Lett, 1997, 78(24), 4617

[12]

Lee H, Choi S, Lee S, et al. Effect of light illumination on the [100] uniaxial magnetic anisotropy of (Ga,Mn)As film. Solid State Commun, 2014, 192, 27

[13]

Lee S, Shin D Y, Chung S J, et al. Tunable quaternary states in ferromagnetic semiconductor (Ga,Mn)As single layer for memory devices. Appl Phys Lett, 2007, 90(15), 152113

[14]

Liu X, Sasaki Y, Furdyna J K. Ferromagnetic resonance in Ga1? xMn xAs effects of magnetic anisotropy. Phys Rev B, 2003, 67(20), 205204

[15]

Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408(6815), 944

[16]

Lee H, Lee S, Choi S, et al. Interlayer exchange coupling in MBE-grown (Ga,Mn)As-based multilayer systems. J Cryst Growth, 2017, 477, 188

[17]

Bac S K, Lee H, Kee S, et al. Effects on magnetic properties of (Ga,Mn)As induced by proximity of topological insulator Bi2Se3. J Electron Mater, 2018, 47(8), 4308

[18]

Chang J, Bhoi S, Lee K J, et al. Effects of film thickness and annealing on the magnetic properties of (Ga,Mn)AsP ferromagnetic semiconductor. J Cryst Growth, 2019, 512, 112

[19]

Yuldashev S U, Im K, Yalishev V S, et al. Effect of additional nonmagnetic acceptor doping on the resistivity peak and the Curie temperature of Ga1? xMn xAs epitaxial layers. Appl Phys Lett, 2003, 82(8), 1206

[20]

Chung S, Lee S, Chung J H, et al. Giant magnetoresistance and long-range antiferromagnetic interlayer exchange coupling in (Ga,Mn)As/GaAs: Be multilayers. Phys Rev B, 2010, 82(5), 054420

[21]

Chung S, Lee S, Yoo T, et al. Determination of interlayer exchange fields acting on individual (Ga,Mn)As layers in (Ga,Mn)As/GaAs multilayers. Jpn J Appl Phys, 2015, 54(3), 033001

[22]

Lee H, Lee S, Choi S, et al. Antiferromagnetic interlayer exchange coupling in ferromagnetic (Ga,Mn)As/GaAs: Be multilayers. IEEE Trans Magn, 2015, 51(11), 2400604

[23]

Leiner J, Lee H, Yoo T, et al. Observation of antiferromagnetic interlayer exchange coupling in a Ga1? xMnxAs/GaAs: Be/Ga1? xMn xAs trilayer structure. Phys Rev B, 2010, 82(19), 195205

[24]

Baxter D V, Ruzmetov D, Scherschligt J, et al. Anisotropic magnetoresistance in Ga1? xMn xAs. Phys Rev B, 2002, 65(21), 212407

[25]

Wang K Y, Edmonds K W, Campion R P, et al. Anisotropic magnetoresistance and magnetic anisotropy in high-quality (Ga,Mn)As films. Phys Rev B, 2005, 72(8), 085201

[26]

Shin D Y, Chung S J, Lee S, et al. Temperature dependence of magnetic anisotropy in ferromagnetic (Ga,Mn)As films: Investigation by the planar Hall effect. Phys Rev B, 2007, 76(3), 035327

[27]

Grünberg P A. Exchange anisotropy, interlayer exchange coupling and GMR in research and application. Sens Actuators A, 2001, 91(1), 153

[28]

Giddings A D, Jungwirth T, Gallagher B L. (Ga,Mn)As based superlattices and the search for antiferromagnetic interlayer coupling. Phys Rev B, 2008, 78(16), 165312

[29]

Sankowski P, Kacman P. Interlayer exchange coupling in (Ga,Mn)As-based superlattices. Phys Rev B, 2005, 71(20), 201303

[30]

Sza?owski K, Balcerzak T. Antiferromagnetic interlayer coupling in diluted magnetic thin films with RKKY interaction. Phys Rev B, 2009, 79(21), 214430

[31]

Chung J H, Chung S J, Lee S, et al. Carrier-mediated antiferromagnetic interlayer exchange coupling in diluted magnetic semiconductor multilayers Ga1? xMn xAs: GaAs: Be. Phys Rev Lett, 2008, 101(23), 237202

[32]

Chung J H, Lin J, Furdyna J K, et al. Investigation of weak interlayer exchange coupling in (Ga,Mn)As/GaAs superlattices with insulating nonmagnetic spacers. J Appl Phys, 2011, 110(1), 013912

[33]

K?pa H, Le V K, Brown C M, et al. Probing hole-induced ferromagnetic exchange in magnetic semiconductors by inelastic neutron scattering. Phys Rev Lett, 2003, 91(8), 087205

[34]

Rhyne J J, Lin J, Furdyna J K, et al. Anomalous antiferromagnetic coupling in [ZnTe?MnTe] superlattices. J Magn Magn Mater, 1998, 177–181, 1195

[35]

Unguris J, Celotta R J, Pierce D T. Observation of two different oscillation periods in the exchange coupling of Fe/Cr/Fe(100). Phys Rev Lett, 1991, 67(1), 140

[36]

Bruno P, Chappert C. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys Rev Lett, 1991, 67(12), 1602

[37]

Bruno P, Chappert C. Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Phys Rev B, 1992, 46(1), 261

[38]

Yafet Y. Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas. Phys Rev B, 1987, 36(7), 3948

[39]

Chen B, Xu H, Ma C, et al. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal. Science, 2017, 357(6347), 191

[40]

Chung S, Lee S, Yoo T, et al. The critical role of next-nearest-neighbor interlayer interaction in the magnetic behavior of magnetic/non-magnetic multilayers. New J Phys, 2013, 15(12), 123025

[41]

Eid K F, Stone M B, Ku K C, et al. Exchange biasing of the ferromagnetic semiconductor Ga1? xMn xAs. Appl Phys Lett, 2004, 85(9), 1556

[42]

Yu K M, Walukiewicz W, Wojtowicz T, et al. Effect of film thickness on the incorporation of Mn interstitials in Ga1? xMn xAs. Appl Phys Lett, 2005, 86(4), 042102

[43]

Lee H, Bac S K, Lee S, et al. Experimental determination of next-nearest-neighbor interlayer exchange coupling in ferromagnetic (Ga,Mn)As/GaAs: Be multilayers. Appl Phys Lett, 2015, 107(19), 192403

[44]

Han J H, Lee H W. Interlayer exchange coupling between next nearest neighbor layers. Phys Rev B, 2012, 86(17), 174426

[1]

Jinhuo Chen, Wenjian Li. Significant improvement of ZnS film electrical and optical performance by indium incorporation. J. Semicond., 2014, 35(9): 093003. doi: 10.1088/1674-4926/35/9/093003

[2]

Achour Rahal, Said Benramache, Boubaker Benhaoua. Preparation of n-type semiconductor SnO2 thin films. J. Semicond., 2013, 34(8): 083002. doi: 10.1088/1674-4926/34/8/083002

[3]

Qing-Hai Tan, Xin Zhang, Xiang-Dong Luo, Jun Zhang, Ping-Heng Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J. Semicond., 2017, 38(3): 031006. doi: 10.1088/1674-4926/38/3/031006

[4]

Zhao Youwen, Dong Zhiyuan, Wei Xuecheng, Duan Manlong, Li Jinmin. Study of Sublimation Crystal Growth of Bulk AlN. J. Semicond., 2006, 27(7): 1241.

[5]

Lu Feiping, Peng Yingquan, Song Chang'an, Xing Hongwei, Li Xunshuan, Yang Qingsen. Preparation and Optical Properties of 8-Hydroxylquinline Cadmium Thin Film. J. Semicond., 2007, 28(7): 1063.

[6]

Lily Liu, Changbin Song, Bin Xue, Jing Li, Junxi Wang, Jinmin Li. Exploration of photosensitive polyimide as the modification layer in thin film microcircuit. J. Semicond., 2018, 39(2): 026001. doi: 10.1088/1674-4926/39/2/026001

[7]

M. R. Fadavieslam, M. M. Bagheri-Mohagheghi. Spray pyrolysis of tin selenide thin-film semiconductors:the effect of selenium concentration on the properties of the thin films. J. Semicond., 2013, 34(8): 082001. doi: 10.1088/1674-4926/34/8/082001

[8]

T. Bentrcia, F. Djeffal, E. Chebaaki. ANFIS-based approach to studying subthreshold behavior including the traps effect for nanoscale thin-film DG MOSFETs. J. Semicond., 2013, 34(8): 084001. doi: 10.1088/1674-4926/34/8/084001

[9]

Achour Rahal, Said Benramache, Boubaker Benhaoua. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method. J. Semicond., 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003

[10]

Zhao Miao, Zhou Daibing, Tan Manqing, Wang Xiaodong, Wu Xuming. Preparation of Si/SiO2 Optical Thin Film by Double Source Electron Beam Evaporation Technology. J. Semicond., 2006, 27(9): 1586.

[11]

Balasaheb M. Palve, Sandesh R. Jadkar, Habib M. Pathan. A simple chemical route to synthesize the umangite phase of copper selenide (Cu3Se2) thin film at room temperature. J. Semicond., 2017, 38(6): 063003. doi: 10.1088/1674-4926/38/6/063003

[12]

Kh. S. Karimov, M. Mahroof-Tahir, M. Saleem, N. Ahmad, A. Rashid. Optical transmission in thin films of vanadium compounds. J. Semicond., 2014, 35(7): 072002. doi: 10.1088/1674-4926/35/7/072002

[13]

Dandan Wang, Qingpu Wang, Hanbin Wang, Xijian Zhang, Liwei Wu, Fujie Li, Shuai Yuan. Characteristics of sputtered Y-doped IZO thin films and devices. J. Semicond., 2015, 36(9): 093004. doi: 10.1088/1674-4926/36/9/093004

[14]

Wang Gang, Li Wei, Li Ping, Li Zuxiong, Fan Xue, Jiang Jing. A novel antifuse structure based on amorphous bismuth zinc niobate thin films. J. Semicond., 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002

[15]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

[16]

M. R. Fadavieslam, N. Shahtahmasebi, M. Rezaee-Roknabadi, M. M. Bagheri-Mohagheghi. Effect of deposition conditions on the physical properties of SnxSy thin films prepared by the spray pyrolysis technique. J. Semicond., 2011, 32(11): 113002. doi: 10.1088/1674-4926/32/11/113002

[17]

Said Benramache, Foued Chabane, Boubaker Benhaoua, Fatima Z. Lemmadi. Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films. J. Semicond., 2013, 34(2): 023001. doi: 10.1088/1674-4926/34/2/023001

[18]

Zhang Jun, Xie Erqing, Fu Yujun, Li Hui, Shao Lexi. Influence of Substrate Temperature and Nitrogen Gas on Zinc Nitride Thin Films Prepared by RF Reactive Sputtering. J. Semicond., 2007, 28(8): 1173.

[19]

H. H. Güllü, M. Parlak. Investigation of post-thermal annealing on material properties of Cu–In–Zn–Se thin films. J. Semicond., 2017, 38(12): 123001. doi: 10.1088/1674-4926/38/12/123001

[20]

M. R. Fadavieslam. Effect of substrate temperature on the physical properties of SnS2:Cu thin films deposited by spray pyrolysis. J. Semicond., 2018, 39(12): 123005. doi: 10.1088/1674-4926/39/12/123005

Search

Advanced Search >>

GET CITATION

S Lee, S Chung, H Lee, X Y Liu, M Dobrowolska, J K Furdyna, 合乐彩票[J]. J. Semicond., 2019, 40(8): 081503. doi: 10.1088/1674-4926/40/8/081503.

Export: BibTex EndNote

Article Metrics

Article views: 251 Times PDF downloads: 43 Times Cited by: 0 Times

History

Manuscript received: 22 May 2019 Manuscript revised: 03 June 2019 Online: Accepted Manuscript: 02 July 2019 Uncorrected proof: 09 July 2019 Published: 09 August 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤