J. Semicond. > Volume 40?>?Issue 10?> Article Number: 101301

合乐彩票

Giorgos Boras , Xuezhe Yu , and Huiyun Liu

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Over the past decades, the progress in the growth of materials which can be applied to cutting-edge technologies in the field of electronics, optoelectronics and energy harvesting has been remarkable. Among the various materials, group III–V semiconductors are of particular interest and have been widely investigated due to their excellent optical properties and high carrier mobility. However, the integration of III–V structures as light sources and numerous other optical components on Si, which is the foundation for most optoelectronic and electronic integrated circuits, has been hindered by the large lattice mismatch between these compounds. This mismatch results in substantial amounts of strain and degradation of the performance of the devices. Nanowires (NWs) are unique nanostructures that induce elastic strain relaxation, allowing for the monolithic integration of III–V semiconductors on the cheap and mature Si platform. A technique that ensures flexibility and freedom in the design of NW structures is the growth of ternary III–V NWs, which offer a tuneable frame of optical characteristics, merely by adjusting their nominal composition. In this review, we will focus on the recent progress in the growth of ternary III–V NWs on Si substrates. After analysing the growth mechanisms that are being employed and describing the effect of strain in the NW growth, we will thoroughly inspect the available literature and present the growth methods, characterization and optical measurements of each of the III–V ternary alloys that have been demonstrated. The different properties and special treatments required for each of these material platforms are also discussed. Moreover, we will present the results from the works on device fabrication, including lasers, solar cells, water splitting devices, photodetectors and FETs, where ternary III–V NWs were used as building blocks. Through the current paper, we exhibit the up-to-date state in this field of research and summarize the important accomplishments of the past few years.

Key words: ternary alloysIII–V nanowiresSi substratesgrowthdevices

Abstract: Over the past decades, the progress in the growth of materials which can be applied to cutting-edge technologies in the field of electronics, optoelectronics and energy harvesting has been remarkable. Among the various materials, group III–V semiconductors are of particular interest and have been widely investigated due to their excellent optical properties and high carrier mobility. However, the integration of III–V structures as light sources and numerous other optical components on Si, which is the foundation for most optoelectronic and electronic integrated circuits, has been hindered by the large lattice mismatch between these compounds. This mismatch results in substantial amounts of strain and degradation of the performance of the devices. Nanowires (NWs) are unique nanostructures that induce elastic strain relaxation, allowing for the monolithic integration of III–V semiconductors on the cheap and mature Si platform. A technique that ensures flexibility and freedom in the design of NW structures is the growth of ternary III–V NWs, which offer a tuneable frame of optical characteristics, merely by adjusting their nominal composition. In this review, we will focus on the recent progress in the growth of ternary III–V NWs on Si substrates. After analysing the growth mechanisms that are being employed and describing the effect of strain in the NW growth, we will thoroughly inspect the available literature and present the growth methods, characterization and optical measurements of each of the III–V ternary alloys that have been demonstrated. The different properties and special treatments required for each of these material platforms are also discussed. Moreover, we will present the results from the works on device fabrication, including lasers, solar cells, water splitting devices, photodetectors and FETs, where ternary III–V NWs were used as building blocks. Through the current paper, we exhibit the up-to-date state in this field of research and summarize the important accomplishments of the past few years.

Key words: ternary alloysIII–V nanowiresSi substratesgrowthdevices



References:

[1]

Tong Q Y, G?sele U. Semiconductor wafer bonding, science and technology. John Wiley & Sons, 1999, 204

[2]

Palit S, Kirch J, Huang M, et al. Facet-embedded thin-film III–V edge-emitting lasers integrated with SU-8 waveguides on silicon. Opt Lett, 2010, 35(20), 3474

[3]

Palit S, Kirch J, Tsvid G, et al. Low-threshold thin-film III–V lasers bonded to silicon with front and back side defined features. Opt Lett, 2009, 34(18), 2802

[4]

Bogdanov M V, Bulashevich K A, Khokhlev O V, et al. Current crowding effect on light extraction efficiency of thin-film LEDs. Phys Stat Solidi C, 2010, 7(7/8), 2124

[5]

Wierer J J Jr, David A, Megens M M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat Photonics, 2009, 3, 163

[6]

Pouladi S, Rathi M, Khatiwada D, et al. High-efficiency flexible III–V photovoltaic solar cells based on single-crystal-like thin films directly grown on metallic tapes. Prog Photovolt Res Appl, 2019, 27, 30

[7]

Tanabe K. A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional. photonic up/down conversion and plasmonic nanometallic structures. Energy, 2009, 2, 504

[8]

Yokohama M, Yasuda T, Takagi H, et al. Thin body III–V semiconductor-on-insulator metal–oxide–semiconductor field-effect transistors on Si fabicated using direct wafer bonding. Appl Phys Express, 2009, 2, 124501

[9]

Ye P D. Main determinants for III–V metal–oxide–semiconductor field-effect transistors. J Vac Sci Technol A, 2008, 26(4), 697

[10]

Dubrovskii V G. Theory of VLS growth of compound semiconductors, semiconductors and semimetals. Chapter 1. Elsevier Inc, 2015, 93

[11]

Bolkhovityanov Y B, Pchelyakov O P. GaAs epitaxy on Si substrates: modern status of research and engineering. Phys Usp, 2008, 51(5), 437

[12]

Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12), 11381

[13]

Chang E Y, Yang T H, Luo G, et al. A GeSi-buffer structure for growth of high-quality GaAs epitaxial layers on a Si substrate. J Electron Mater, 2005, 34(1), 23

[14]

Fitzgerald E A, Xie Y H, Green M L, et al. Totally relaxed Ge xSi1– x layers with low threading dislocation densities grown on Si substrates. Appl Phys Lett, 1991, 59, 811

[15]

Dixit V K, Ganguli T, Sharma T K, et al. Studies on MOVPE growth of GaP epitaxial layer on Si (001) substrate and effects of annealing. J Cryst Growth, 2006, 293(1), 5

[16]

Komatsu Y, Hosotani K, Fuyuki T, et al. Heteroepitaxial growth of InGaP on Si with InGaP/GaP step-graded buffer layers. Jpn J Appl Phys, 1997, 36, 5425

[17]

Tsuji T, Yonezu H, Ohshima N. Selective epitaxial growth of GaAs on Si with strained short-period superlattices by molecular beam epitaxy under atomic hydrogen irradiation. J Vac Sci Technol B, 2004, 22(3), 1428

[18]

G?sele U, Bluhm Y, Kastner G, et al. Fundamental issues in wafer bonding. J Vac Sci Technol A, 1999, 17(4), 1145

[19]

M?rtensson T, Svensson C P T, Wacaser B A, et al. Epitaxial III–V nanowires on silicon. Nano Lett, 2004, 4(10), 1987

[20]

Treu J, Stettner T, Watzinger M, et al. Lattice-matched InGaAs?InAlAs core?shell nanowires with improved luminescence and photoresponse properties. Nano Lett, 2015, 15(5), 3533

[21]

Shin J C, Lee A, Mohseni P K, et al. Wafer-scale production of uniform InAs yP1– y nanowire array on silicon for heterogeneous integration. ACS Nano, 2013, 7(6), 5463

[22]

Wu J, Li Y, Kubota J, et al. Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core?shell nanowire photocathode on silicon substrates. Nano Lett, 2014, 14(4), 2013

[23]

Saxena D, Jiang N, Yuan X, et al. Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers. Nano Lett, 2016, 16(8), 5080

[24]

Stettner T, Zimmermann P, Loitsch B, et al. Coaxial GaAs–AlGaAs core-multishell nanowire lasers with epitaxial gain control. Appl Phys Lett, 2016, 108, 011108

[25]

Tomioka K, Motohisa J, Hara S, et al. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett, 2010, 10(5), 1639

[26]

Svensson C P T, M?rtensson T, Tr?g?rdh J, et al. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology, 2008, 19, 305201

[27]

Huh J, Kim D C, Munshi A M, et al. Low frequency noise in single GaAsSb nanowires with self-induced compositional gradients. Nanotechnology, 2016, 27, 385703

[28]

Sharma M, Ahmad E, Dev D, et al. Improved performance of GaAsSb/AlGaAs nanowire ensemble Schottky barrier based photodetector via in situ annealing. Nanotechnology, 2019, 30, 034005

[29]

Ren D, Dheeraj D L, Jin C, et al. New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays. Nano Lett, 2016, 16(2), 1201

[30]

Sourribes M J L, Isakov I, Panfilova M, et al. Mobility enhancement by sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon. Nano Lett, 2014, 14(3), 1643

[31]

Tomioka K, Yoshimura M, Fukui T. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature, 2012, 488, 189

[32]

Hou J J, Han N, Wang F, et al. Synthesis and characterizations of ternary ingaas nanowires by a two-step growth method for high-performance electronic devices. ACS Nano, 2012, 6(4), 3624

[33]

Bengoechea-Encabo A, Barbagini F, Fernandez-Garrido S, et al. Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. J Cryst Growth, 2011, 325(1), 89

[34]

Ji X, Yang X, Du W, et al. Selective-area MOCVD growth and carrier-transport-type control of InAs(Sb)/GaSb core–shell nanowires. Nano Lett, 2016, 16(12), 7580

[35]

Tomioka K. Selective-area growth of III–V nanowires and their applications. J Mater Res, 2011, 26(17), 2127

[36]

Tomioka K, Tanaka T, Hara S, et al. III–V nanowires on Si substrate: selective-area growth and device applications. IEEE J Sel Top Quantum Electron, 2011, 17(4), 1112

[37]

Yamano K, Kishino K. Selective area growth of InGaN-based nanocolumn LED crystals on AlN/Si substrates useful for integrated μ-LED fabrication. Appl Phys Lett, 2018, 112(9), 091105

[38]

Kohen D, Tileli V, Cayron C, et al. Al catalyzed growth of silicon nanowires and subsequent in situ dry etching of the catalyst for photovoltaic application. Phys Status Solidi A, 2011, 208(11), 2676

[39]

Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single-crystal growth. Appl Phys Lett, 1964, 4(5), 89

[40]

Messing M E, Hillerich K, Johansson J, et al. The use of gold for fabrication of nanowire structures. Gold Bulletin, 2009, 42(3), 172

[41]

Zhang Y, Wu J, Aagesen M, et al. III–V nanowires and nanowire optoelectronic devices. J Phys D, 2015, 48, 463001

[42]

Li N, Tan T Y, G?sele U. Transition region width of nanowire hetero- and pn-junctions grown using vapor–liquid–solid processes. Appl Phys A, 2008, 90, 591

[43]

Sarkar K, Palit M, Banerji P, et al. Silver catalyzed growth of In xGa1– xAs nanowires on Si (001) by metal–organic chemical vapour deposition. CrystEngComm, 2015, 17, 8519

[44]

Colombo C, Spirkoska D, Frimmer M, et al. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys Rev B, 2008, 77, 155326

[45]

Ghalamestani S G, Ek M, Ghasemi M, et al. Morphology and composition controlled Ga xIn1– xSb nanowires: understanding ternary antimonide growth. Nanoscale, 2014, 6, 1086

[46]

Berg A, Lenrick F, Vainorius N, et al. Growth parameter design for homogeneous material composition in ternary Ga xIn1– xP nanowires. Nanotechnology, 2015, 26, 435601

[47]

Dick K A, Bolinsson J, Borg B M, et al. Controlling the abruptness of axial heterojunctions in III–V nanowires: beyond the reservoir effect. Nano Lett, 2012, 12(6), 3200

[48]

Motohisa J, Noborisaka J, Hara S, et al. Catalyst-free growth of semiconductor nanowires by selective area MOVPE. AIP Conference Proceedings, 2005, 772, 877

[49]

Koblmuüller G, Abstreiter G. Growth and properties of InGaAs nanowires on silicon. Phys Status Solidi, 2013, 7(10), 11

[50]

Shin J C, Choi K J, Kim D Y, et al. Characteristics of strain-induced In xGa1– xAs nanowires grown on Si (111) substrates. Cryst Growth Des, 2012, 12, 2994

[51]

Glas F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys Rev B, 2006, 74, 121302

[52]

Li L, Pan D, Xue Y, et al. Near full-composition-range high-quality GaAs1– xSbx nanowires grown by molecular beam epitaxy. Nano Lett, 2017, 17(2), 622

[53]

van der Merwe J H. Misfit dislocations in epitaxy. Metall Mater Trans A, 2002, 33(8), 2475

[54]

Kavanagh K L. Misfit dislocations in nanowire heterostructures. Semicond Sci Technol, 2010, 25, 024006

[55]

de la Mata M, Magen C, Caroff P, et al. Atomic scale strain relaxation in axial semiconductor III–V nanowire heterostructures. Nano Lett, 2014, 14(11), 6614

[56]

Gr?nqvist J, S?ndergaard N, Boxberg F, et al. Strain in semiconductor core/shell nanowires. J Appl Phys, 2009, 106, 053508

[57]

Ferrand D, Cibert J. Strain in crystalline core-shell nanowires. Eur Phys J: Appl Phys, 2014, 67(3), 30403

[58]

Gagliano L, Albani M, Verheijen M A, et al. Twofold origin of strain-induced bending in core-shell nanowires: the GaP/InGaP case. Nanotechnology, 2018, 29(31), 315703

[59]

Lewis R B, Corfdir P, Kupers H, et al. nanowires bending over backward from strain partitioning in asymmetric core-shell heterostructures. Nano Lett, 2018, 18(4), 2343

[60]

Kavanagh K L, Saveliev I, Blumin M, et al. Faster radial strain relaxation in InAs–GaAs core–shell heterowires. Appl Phys Lett, 2012, 111, 044301

[61]

Dayeh S A, Tang W, Boioli F, et al. Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett, 2013, 13(5), 1869

[62]

Gronqvist J, Sondergaard N, Boxberg F, et al. Strain in semiconductor core/shell nanowires. J Appl Phys, 2009, 106, 053508

[63]

Biermanns A, Rieger T, Bussone G, et al. Axial strain in GaAs/InAs core–shell nanowires. Appl Phys Lett, 2013, 102, 043109

[64]

Zeng H, Yu X, Fonseka H A, et al. Hybrid III–V/IV nanowires: high- quality Ge shell epitaxy on GaAs cores. Nano Lett, 2018, 18(10), 6397

[65]

Tietjen J J, Amick J A. The preparation and properties of vapour-deposited epitaxial GaAs1– xP x using arsine and phosphine. J Electrochem Soc, 1966, 113, 724

[66]

Priante G, Patriarche G, Oehler F, et al. Abrupt GaP/GaAs interfaces in self-catalyzed nanowires. Nano Lett, 2015, 15(9), 6036

[67]

Halder N N, Kelrich A, Cohen S, et al. Pure wurtzite GaP nanowires grown on zincblende GaP substrates by selective area vapor liquid solid epitaxy. Nanotechnology, 2017, 28, 465603

[68]

Im H S, Jung C S, Park K, et al. Band gap tuning of twinned GaAsP ternary nanowires. J Phys Chem C, 2014, 118(8), 4546

[69]

Zhang Y, Aagesen M, Holm J V, et al. Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy. Nano Lett, 2013, 13(8), 3897

[70]

Zhang Y, Wu J, Aagesen M, et al. Self-catalyzed ternary core-shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett, 2014, 14(8), 4542

[71]

Wu J, Ramsay A, Sanchez A M, et al. Defect-free self-catalyzed GaAs/GaAsP nanowire quantum dots grown on silicon substrate. Nano Lett, 2016, 16(1), 504

[72]

Isako Iv, Panfilova M, Sourribes M J L, et al. InAs1– xP x nanowires grown by catalyst-free molecular-beam epitaxy. Nanotechnology, 2013, 24(8), 085707

[73]

Lee J H, Pin M W, Choi S J, et al. Electromechanical properties and spontaneous response of the current in inasp nanowires. Nano Lett, 2016, 16(11), 6738

[74]

Persson A I, Bj?rk M T, Jeppesen S, et al. InAs1– xP x nanowires for device engineering. Nano Lett, 2006, 6(3), 403

[75]

Tr?g?rdh J, Persson A I, Wagner J B, et al. Measurements of the band gap of wurtzite InAs1– xP x nanowires using photocurrent spectroscopy. J Appl Phys, 2007, 101(12), 123701

[76]

Tchernycheva M, Cirlin G E, Patriarche G, et al. Growth and characterization of InP nanowires with InAsP insertions. Nano Lett, 2007, 7(6), 1500

[77]

Cirlin G E, Tchernycheva M, Patriarche G, et al. Effect of postgrowth heat treatment on the structural and optical properties of InP/InAsP/InP nanowires. Semiconductors, 2012, 46(2), 175

[78]

Ma L, Zhang X, Li H, et al. Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm. Semicond Sci Technol, 2015, 30(10), 105033

[79]

Huh J, Yun H, Kim D C, et al. Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients. Nano Lett, 2015, 15(6), 3709

[80]

Ren D, Huh J, Dheeraj D L, et al. Influence of pitch on the morphology and luminescence properties of self-catalyzed GaAsSb nanowire arrays. Appl Phys Lett, 2016, 109, 243102

[81]

Yu X, Li L, Wang H, et al. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy. Nanoscale, 2016, 8, 10615

[82]

Ahmad E, Karim M R, Hafiz S B, et al. A two-step growth pathway for high Sb incorporation in GaAsSb nanowires in the telecommunication wavelength range. Sci Rep, 2017, 7, 10111

[83]

Sharma M, Karim M R, Kasanaboina P, et al. Pitch-induced bandgap tuning in self-catalyzed growth of patterned GaAsSb axial and GaAs/GaAsSb core-shell nanowires using molecular beam epitaxy. Cryst Growth Des, 2017, 17(2), 730

[84]

Alarcon-Llado E, Conesa-Boj S, Wallart X, et al. Raman spectroscopy of self-catalyzed GaAs1– xSb x nanowires grown on silicon. Nanotechnology, 2013, 24(40), 405707

[85]

Conesa-Boj S, Kriegner D, Han X, et al. Gold-free ternary III–V antimonide nanowire arrays on silicon: twin-free down to the first bilayer. Nano Lett, 2014, 14(1), 326

[86]

Plissard S, Dick K A. WallartS, et al Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl Phys Lett, 2010, 96, 121901

[87]

Alhodaib A, Noori Y J, Carrington P J, et al. Room-temperature mid-infrared emission from faceted InAsSb multi quantum wells embedded in InAs nanowires. Nano Lett, 2018, 18(1), 235

[88]

Du W N, Yang X G, Wang X Y, et al. The self-seeded growth of InAsSb nanowires on silicon by metal-organic vapour phase epitaxy. J Cryst Growth, 2014, 396, 33

[89]

Anyebe E A, Zhang Q. Self-catalysed InAs1– xSb x nanowires grown directly on bare Si substrates. Mater Res Bull, 2014, 60, 572

[90]

Zhang Q D, Anyebe E A, Chen R, et al. Sb-induced phase control of InAsSb nanowires grown by molecular beam epitaxy. Nano Lett, 2015, 15(2), 1109

[91]

Du W, Yang X, Pan H, et al. Two different growth mechanisms for Au-free InAsSb nanowires growth on Si substrate. Cryst Growth Des, 2015, 15(5), 2413

[92]

Du W, Yang X, Pan H, et al. Controlled-direction growth of planar InAsSb nanowires on Si substrates without foreign catalysts. Nano Lett, 2016, 16(2), 877

[93]

Zhuang Q D, Alradhi H, Jin Z M, et al. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics. Nanotechnology, 2017, 28(10), 105710

[94]

Anyebe E A, Rajpalke M K, Veal T D, et al. Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1– xSb x nanowires. Nano Res, 2015, 8(4), 1309

[95]

Thompson M D, Alhodaib A, Craig A P, et al. Low Leakage-current InAsSb nanowire photodetectors on silicon. Nano Lett, 2016, 16(1), 182

[96]

Cirlin G E, Reznik R R, Shtrom I V, et al. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates. J Phys D, 2017, 50(48), 484003

[97]

Tambe M J, Lim S K, Smith M J, et al. Realization of defect-free epitaxial core/shell GaAs/AlGaAs nanowire heterostructures. Appl Phys Lett, 2008, 93, 151917

[98]

Titova L V, Hoang T B, Jackson H E, et al. Temperature dependence of photoluminescence from single core–shell GaAs–AlGaAs nanowires. Appl Phys Lett, 2006, 89, 173126

[99]

Hoang T B, Titova L V, Yarrison-Rice J M, et al. Resonant excitation and imaging of non-equilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. Nano Lett, 2007, 7(3), 588

[100]

Koblmuüller G, Mayer B, Stettner T, et al. GaAs-AlGaAs core-shell nanowire lasers on silicon: invited review. Semicond Sci Technol, 2017, 32, 053001

[101]

Saxena D, Mokkapati S, Parkinson P, et al. Optically pumped room-temperature GaAs nanowire lasers. Nat Photonics, 2013, 7, 963

[102]

Heiss M, Fontana Y, Gustafsson A, et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat Mater, 2013, 12, 439

[103]

Chen C, Shehata S, Fradin C R , et al. Self-directed growth of AlGaAs core-shell nanowires for visible applications. Nano Lett, 2007, 7(9), 2584

[104]

Wu Z H, Sun M, Mei X Y, et al. Growth and photoluminescence characteristics of AlGaAs nanowires. Appl Phys Lett, 2004, 85(4), 657

[105]

Dubrovskii V G, Shtrom I V, Reznik R R, et al. Origin of spontaneous core-shell AlGaAs nanowires grown by molecular beam epitaxy. Crys Growth Des, 2016, 16(12), 7251

[106]

Guo J, Hang H, Ding Y, et al. Growth of zinc blende GaAs/AlGaAs heterostructure nanowires on Si substrate by using AlGaAs buffer layers. J Cryst Growth, 2012, 359, 30

[107]

Loitsch B, Winnerl J, Grimaldi G, et al. Crystal phase quantum dots in the ultrathin core of GaAs–AlGaAs core–shell nanowires. Nano Lett, 2015, 15(11), 7544

[108]

Dietrich C P, Fiore A, Thompson M G, et al. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev, 2016, 10(6), 870

[109]

Chen R, Tran T T D, Ng K W, et al. Nanolasers grown on silicon. Nat Photonics, 2011, 5, 170

[110]

Tatebayashi J, Kako S, Ho J, et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photonics, 2015, 9, 501

[111]

Hou J J, Wang F, Han N, et al. Stoichiometric effect on electrical, optical and structural properties of composition-tunable In xGa1– xAs nanowires. ACS Nano, 2012, 6(10), 9320

[112]

Shin J C, Kim D Y, Lee A, et al. Improving the composition uniformity of Au-catalyzed InGaAs nanowires on silicon. J Cryst Growth, 2013, 372, 15

[113]

Shin J C, Kim K H, Hu H, et al. Monolithically grown In xGa1– xAs nanowire array on silicon tandem solar cells with high efficiency. IEEE Photonic Society 24th Annual Meeting, 2011

[114]

Shin J C, Kim K H, Yu K J, et al. In xGa1– xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. Nano Lett, 2011, 11(11), 4831

[115]

Treu J, Speckbacher M, Saller K, et al. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy. Appl Phys Lett, 2016, 108(5), 053110

[116]

Mork?tter S, Funk S, Liang M, et al. Role of microstructure on optical properties in high-uniformity In xGa1– xAs nanowire arrays: Evidence of a wider wurtzite band gap. Phys Rev B, 2013, 87, 205303

[117]

Berg A, Yazdi S, Nowzari A, et al. Radial nanowire light-emitting diodes in the (Al xGa1– x) yIn1– yP material system. Nano Lett, 2016, 16(1), 656

[118]

Kivisaari P, Berg A, Karimi M, et al. Optimization of current injection in AlGaInP core-shell nanowire light-emitting diodes. Nano Lett, 2017, 17(6), 3599

[119]

Li X, Shi T, Liu G, et al. Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III–V nanowire/Si film two-junction solar cells. Opt Express, 2015, 23(19), 25316

[120]

Amiri S E H, Ranga P, Li D Y, et al. Growth of InGaP alloy nanowires with widely tunable bandgaps on silicon substrates. Conference on Lasers and Electro-Optics, 2017

[121]

Tatebayashi J, Lin A, Wong P S, et al. Visible light emission from self-catalyzed GaInP/GaP core-shell double heterostructure nanowires on silicon. J Appl Phys, 2010, 108, 034315

[122]

Fakhr A, Haddara Y M, LaPierre R R. Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions. Nanotechnology, 2010, 21(16), 165601

[123]

Jacobsson D, Persson J M, Kriegner D, et al. Particle-assisted Ga xIn1– xP nanowire growth for designed bandgap structures. Nanotechnology, 2012, 23(24), 245601

[124]

Berg A, Caroff P, Shahid N, et al. Growth and optical properties of In xGa1– xP nanowires synthesized by selective-area epitaxy. Nano Res, 2017, 10(2), 672

[125]

Otnes G, Heurlin M, Zeng X L, et al. InxGa 1–xP nanowire growth dynamics strongly affected by doping using diethylzinc. Nano Lett, 2017, 17(2), 702

[126]

Ghalamestani S G, Ek M, Gamjipour B, et al. Demonstration of defect-free and composition tunable Ga xIn1– xSb nanowires. Nano Lett, 2012, 12(9), 4914

[127]

Zhou H, Pozuelo M, Hicks R F, et al. Self-catalyzed vapour-liquid-solid growth of InP1– xSb x nanostructures. J Cryst Growth, 2011, 319, 25

[128]

Russell H B, Andriotis A N, Menon M, et al. Direct band gap gallium antimony phosphide (GaSb xP1– x) alloys. Sci Rep, 2016, 6, 20822

[129]

Gagliano L, Kruijsse M, Schefold J D D, et al. Efficient green emission from wurtzite Al xIn1– xP nanowires. Nano Lett, 2018, 18(6), 3543

[130]

Mayer B, Rudolph D, Schnell J, et al. Lasing from individual GaAs–AlGaAs core–shell nanowires up to room temperature. Nat Commun, 2013, 4, 2931

[131]

Birowosuto M D, Yokoo A, Zhang G, et al. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nat Mater, 2014, 13, 279

[132]

Ren D, Ahtapodov L, Nilsen J S, et al. Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature. Nano Lett, 2018, 18(4), 2304

[133]

Stettner T, Thurn A, D?blinger M, et al. Tuning lasing emission toward long wavelengths in GaAs-(In,Al)GaAs core-multishell nanowires. Nano Lett, 2018, 18(10), 6292

[134]

Kim H, Lee W J, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 2017, 17, 5244

[135]

Kim H, Farrell A C, Senanayake P, et al. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett, 2016, 16, 1833

[136]

Lee W J, Kim H, You J B, et al. Ultracompact bottom-up photonic crystal lasers on silicon-on-insulator. Sci Rep, 2017, 7, 9543

[137]

Zhang Y, Liu H. Nanowires for high-efficiency, low-cost solar photovoltaics. Crystals, 2019, 9(2), 87

[138]

Lin R, Galan S V, Sun H, et al. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations. Photonics Res, 2018, 6(5), 457

[139]

Zhang Y, Sanchez A M, Aagesen M, et al. Growth and fabrication of high-quality single nanowire devices with radial p–i–n junctions. Small, 2019, 15(3), 1803684

[140]

Holm J V, J?rgensen H I, Krogstrup P, et al. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat Commun, 2013, 4, 1498

[141]

Hou J J, Wang F, Han N, et al. Diameter dependence of electron mobility in InGaAs nanowires. Appl Phys Lett, 2013, 102(9), 093112

[142]

Kilpi O P, Svensson J, Wu J, et al. Vertical InAs/InGaAs heterostructure metal–oxide–semiconductor field-effect transistors on Si. Nano Lett, 2017, 17(10), 6006

[1]

Tong Q Y, G?sele U. Semiconductor wafer bonding, science and technology. John Wiley & Sons, 1999, 204

[2]

Palit S, Kirch J, Huang M, et al. Facet-embedded thin-film III–V edge-emitting lasers integrated with SU-8 waveguides on silicon. Opt Lett, 2010, 35(20), 3474

[3]

Palit S, Kirch J, Tsvid G, et al. Low-threshold thin-film III–V lasers bonded to silicon with front and back side defined features. Opt Lett, 2009, 34(18), 2802

[4]

Bogdanov M V, Bulashevich K A, Khokhlev O V, et al. Current crowding effect on light extraction efficiency of thin-film LEDs. Phys Stat Solidi C, 2010, 7(7/8), 2124

[5]

Wierer J J Jr, David A, Megens M M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat Photonics, 2009, 3, 163

[6]

Pouladi S, Rathi M, Khatiwada D, et al. High-efficiency flexible III–V photovoltaic solar cells based on single-crystal-like thin films directly grown on metallic tapes. Prog Photovolt Res Appl, 2019, 27, 30

[7]

Tanabe K. A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional. photonic up/down conversion and plasmonic nanometallic structures. Energy, 2009, 2, 504

[8]

Yokohama M, Yasuda T, Takagi H, et al. Thin body III–V semiconductor-on-insulator metal–oxide–semiconductor field-effect transistors on Si fabicated using direct wafer bonding. Appl Phys Express, 2009, 2, 124501

[9]

Ye P D. Main determinants for III–V metal–oxide–semiconductor field-effect transistors. J Vac Sci Technol A, 2008, 26(4), 697

[10]

Dubrovskii V G. Theory of VLS growth of compound semiconductors, semiconductors and semimetals. Chapter 1. Elsevier Inc, 2015, 93

[11]

Bolkhovityanov Y B, Pchelyakov O P. GaAs epitaxy on Si substrates: modern status of research and engineering. Phys Usp, 2008, 51(5), 437

[12]

Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12), 11381

[13]

Chang E Y, Yang T H, Luo G, et al. A GeSi-buffer structure for growth of high-quality GaAs epitaxial layers on a Si substrate. J Electron Mater, 2005, 34(1), 23

[14]

Fitzgerald E A, Xie Y H, Green M L, et al. Totally relaxed Ge xSi1– x layers with low threading dislocation densities grown on Si substrates. Appl Phys Lett, 1991, 59, 811

[15]

Dixit V K, Ganguli T, Sharma T K, et al. Studies on MOVPE growth of GaP epitaxial layer on Si (001) substrate and effects of annealing. J Cryst Growth, 2006, 293(1), 5

[16]

Komatsu Y, Hosotani K, Fuyuki T, et al. Heteroepitaxial growth of InGaP on Si with InGaP/GaP step-graded buffer layers. Jpn J Appl Phys, 1997, 36, 5425

[17]

Tsuji T, Yonezu H, Ohshima N. Selective epitaxial growth of GaAs on Si with strained short-period superlattices by molecular beam epitaxy under atomic hydrogen irradiation. J Vac Sci Technol B, 2004, 22(3), 1428

[18]

G?sele U, Bluhm Y, Kastner G, et al. Fundamental issues in wafer bonding. J Vac Sci Technol A, 1999, 17(4), 1145

[19]

M?rtensson T, Svensson C P T, Wacaser B A, et al. Epitaxial III–V nanowires on silicon. Nano Lett, 2004, 4(10), 1987

[20]

Treu J, Stettner T, Watzinger M, et al. Lattice-matched InGaAs?InAlAs core?shell nanowires with improved luminescence and photoresponse properties. Nano Lett, 2015, 15(5), 3533

[21]

Shin J C, Lee A, Mohseni P K, et al. Wafer-scale production of uniform InAs yP1– y nanowire array on silicon for heterogeneous integration. ACS Nano, 2013, 7(6), 5463

[22]

Wu J, Li Y, Kubota J, et al. Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core?shell nanowire photocathode on silicon substrates. Nano Lett, 2014, 14(4), 2013

[23]

Saxena D, Jiang N, Yuan X, et al. Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers. Nano Lett, 2016, 16(8), 5080

[24]

Stettner T, Zimmermann P, Loitsch B, et al. Coaxial GaAs–AlGaAs core-multishell nanowire lasers with epitaxial gain control. Appl Phys Lett, 2016, 108, 011108

[25]

Tomioka K, Motohisa J, Hara S, et al. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett, 2010, 10(5), 1639

[26]

Svensson C P T, M?rtensson T, Tr?g?rdh J, et al. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology, 2008, 19, 305201

[27]

Huh J, Kim D C, Munshi A M, et al. Low frequency noise in single GaAsSb nanowires with self-induced compositional gradients. Nanotechnology, 2016, 27, 385703

[28]

Sharma M, Ahmad E, Dev D, et al. Improved performance of GaAsSb/AlGaAs nanowire ensemble Schottky barrier based photodetector via in situ annealing. Nanotechnology, 2019, 30, 034005

[29]

Ren D, Dheeraj D L, Jin C, et al. New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays. Nano Lett, 2016, 16(2), 1201

[30]

Sourribes M J L, Isakov I, Panfilova M, et al. Mobility enhancement by sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon. Nano Lett, 2014, 14(3), 1643

[31]

Tomioka K, Yoshimura M, Fukui T. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature, 2012, 488, 189

[32]

Hou J J, Han N, Wang F, et al. Synthesis and characterizations of ternary ingaas nanowires by a two-step growth method for high-performance electronic devices. ACS Nano, 2012, 6(4), 3624

[33]

Bengoechea-Encabo A, Barbagini F, Fernandez-Garrido S, et al. Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. J Cryst Growth, 2011, 325(1), 89

[34]

Ji X, Yang X, Du W, et al. Selective-area MOCVD growth and carrier-transport-type control of InAs(Sb)/GaSb core–shell nanowires. Nano Lett, 2016, 16(12), 7580

[35]

Tomioka K. Selective-area growth of III–V nanowires and their applications. J Mater Res, 2011, 26(17), 2127

[36]

Tomioka K, Tanaka T, Hara S, et al. III–V nanowires on Si substrate: selective-area growth and device applications. IEEE J Sel Top Quantum Electron, 2011, 17(4), 1112

[37]

Yamano K, Kishino K. Selective area growth of InGaN-based nanocolumn LED crystals on AlN/Si substrates useful for integrated μ-LED fabrication. Appl Phys Lett, 2018, 112(9), 091105

[38]

Kohen D, Tileli V, Cayron C, et al. Al catalyzed growth of silicon nanowires and subsequent in situ dry etching of the catalyst for photovoltaic application. Phys Status Solidi A, 2011, 208(11), 2676

[39]

Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single-crystal growth. Appl Phys Lett, 1964, 4(5), 89

[40]

Messing M E, Hillerich K, Johansson J, et al. The use of gold for fabrication of nanowire structures. Gold Bulletin, 2009, 42(3), 172

[41]

Zhang Y, Wu J, Aagesen M, et al. III–V nanowires and nanowire optoelectronic devices. J Phys D, 2015, 48, 463001

[42]

Li N, Tan T Y, G?sele U. Transition region width of nanowire hetero- and pn-junctions grown using vapor–liquid–solid processes. Appl Phys A, 2008, 90, 591

[43]

Sarkar K, Palit M, Banerji P, et al. Silver catalyzed growth of In xGa1– xAs nanowires on Si (001) by metal–organic chemical vapour deposition. CrystEngComm, 2015, 17, 8519

[44]

Colombo C, Spirkoska D, Frimmer M, et al. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys Rev B, 2008, 77, 155326

[45]

Ghalamestani S G, Ek M, Ghasemi M, et al. Morphology and composition controlled Ga xIn1– xSb nanowires: understanding ternary antimonide growth. Nanoscale, 2014, 6, 1086

[46]

Berg A, Lenrick F, Vainorius N, et al. Growth parameter design for homogeneous material composition in ternary Ga xIn1– xP nanowires. Nanotechnology, 2015, 26, 435601

[47]

Dick K A, Bolinsson J, Borg B M, et al. Controlling the abruptness of axial heterojunctions in III–V nanowires: beyond the reservoir effect. Nano Lett, 2012, 12(6), 3200

[48]

Motohisa J, Noborisaka J, Hara S, et al. Catalyst-free growth of semiconductor nanowires by selective area MOVPE. AIP Conference Proceedings, 2005, 772, 877

[49]

Koblmuüller G, Abstreiter G. Growth and properties of InGaAs nanowires on silicon. Phys Status Solidi, 2013, 7(10), 11

[50]

Shin J C, Choi K J, Kim D Y, et al. Characteristics of strain-induced In xGa1– xAs nanowires grown on Si (111) substrates. Cryst Growth Des, 2012, 12, 2994

[51]

Glas F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys Rev B, 2006, 74, 121302

[52]

Li L, Pan D, Xue Y, et al. Near full-composition-range high-quality GaAs1– xSbx nanowires grown by molecular beam epitaxy. Nano Lett, 2017, 17(2), 622

[53]

van der Merwe J H. Misfit dislocations in epitaxy. Metall Mater Trans A, 2002, 33(8), 2475

[54]

Kavanagh K L. Misfit dislocations in nanowire heterostructures. Semicond Sci Technol, 2010, 25, 024006

[55]

de la Mata M, Magen C, Caroff P, et al. Atomic scale strain relaxation in axial semiconductor III–V nanowire heterostructures. Nano Lett, 2014, 14(11), 6614

[56]

Gr?nqvist J, S?ndergaard N, Boxberg F, et al. Strain in semiconductor core/shell nanowires. J Appl Phys, 2009, 106, 053508

[57]

Ferrand D, Cibert J. Strain in crystalline core-shell nanowires. Eur Phys J: Appl Phys, 2014, 67(3), 30403

[58]

Gagliano L, Albani M, Verheijen M A, et al. Twofold origin of strain-induced bending in core-shell nanowires: the GaP/InGaP case. Nanotechnology, 2018, 29(31), 315703

[59]

Lewis R B, Corfdir P, Kupers H, et al. nanowires bending over backward from strain partitioning in asymmetric core-shell heterostructures. Nano Lett, 2018, 18(4), 2343

[60]

Kavanagh K L, Saveliev I, Blumin M, et al. Faster radial strain relaxation in InAs–GaAs core–shell heterowires. Appl Phys Lett, 2012, 111, 044301

[61]

Dayeh S A, Tang W, Boioli F, et al. Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett, 2013, 13(5), 1869

[62]

Gronqvist J, Sondergaard N, Boxberg F, et al. Strain in semiconductor core/shell nanowires. J Appl Phys, 2009, 106, 053508

[63]

Biermanns A, Rieger T, Bussone G, et al. Axial strain in GaAs/InAs core–shell nanowires. Appl Phys Lett, 2013, 102, 043109

[64]

Zeng H, Yu X, Fonseka H A, et al. Hybrid III–V/IV nanowires: high- quality Ge shell epitaxy on GaAs cores. Nano Lett, 2018, 18(10), 6397

[65]

Tietjen J J, Amick J A. The preparation and properties of vapour-deposited epitaxial GaAs1– xP x using arsine and phosphine. J Electrochem Soc, 1966, 113, 724

[66]

Priante G, Patriarche G, Oehler F, et al. Abrupt GaP/GaAs interfaces in self-catalyzed nanowires. Nano Lett, 2015, 15(9), 6036

[67]

Halder N N, Kelrich A, Cohen S, et al. Pure wurtzite GaP nanowires grown on zincblende GaP substrates by selective area vapor liquid solid epitaxy. Nanotechnology, 2017, 28, 465603

[68]

Im H S, Jung C S, Park K, et al. Band gap tuning of twinned GaAsP ternary nanowires. J Phys Chem C, 2014, 118(8), 4546

[69]

Zhang Y, Aagesen M, Holm J V, et al. Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy. Nano Lett, 2013, 13(8), 3897

[70]

Zhang Y, Wu J, Aagesen M, et al. Self-catalyzed ternary core-shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett, 2014, 14(8), 4542

[71]

Wu J, Ramsay A, Sanchez A M, et al. Defect-free self-catalyzed GaAs/GaAsP nanowire quantum dots grown on silicon substrate. Nano Lett, 2016, 16(1), 504

[72]

Isako Iv, Panfilova M, Sourribes M J L, et al. InAs1– xP x nanowires grown by catalyst-free molecular-beam epitaxy. Nanotechnology, 2013, 24(8), 085707

[73]

Lee J H, Pin M W, Choi S J, et al. Electromechanical properties and spontaneous response of the current in inasp nanowires. Nano Lett, 2016, 16(11), 6738

[74]

Persson A I, Bj?rk M T, Jeppesen S, et al. InAs1– xP x nanowires for device engineering. Nano Lett, 2006, 6(3), 403

[75]

Tr?g?rdh J, Persson A I, Wagner J B, et al. Measurements of the band gap of wurtzite InAs1– xP x nanowires using photocurrent spectroscopy. J Appl Phys, 2007, 101(12), 123701

[76]

Tchernycheva M, Cirlin G E, Patriarche G, et al. Growth and characterization of InP nanowires with InAsP insertions. Nano Lett, 2007, 7(6), 1500

[77]

Cirlin G E, Tchernycheva M, Patriarche G, et al. Effect of postgrowth heat treatment on the structural and optical properties of InP/InAsP/InP nanowires. Semiconductors, 2012, 46(2), 175

[78]

Ma L, Zhang X, Li H, et al. Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm. Semicond Sci Technol, 2015, 30(10), 105033

[79]

Huh J, Yun H, Kim D C, et al. Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients. Nano Lett, 2015, 15(6), 3709

[80]

Ren D, Huh J, Dheeraj D L, et al. Influence of pitch on the morphology and luminescence properties of self-catalyzed GaAsSb nanowire arrays. Appl Phys Lett, 2016, 109, 243102

[81]

Yu X, Li L, Wang H, et al. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy. Nanoscale, 2016, 8, 10615

[82]

Ahmad E, Karim M R, Hafiz S B, et al. A two-step growth pathway for high Sb incorporation in GaAsSb nanowires in the telecommunication wavelength range. Sci Rep, 2017, 7, 10111

[83]

Sharma M, Karim M R, Kasanaboina P, et al. Pitch-induced bandgap tuning in self-catalyzed growth of patterned GaAsSb axial and GaAs/GaAsSb core-shell nanowires using molecular beam epitaxy. Cryst Growth Des, 2017, 17(2), 730

[84]

Alarcon-Llado E, Conesa-Boj S, Wallart X, et al. Raman spectroscopy of self-catalyzed GaAs1– xSb x nanowires grown on silicon. Nanotechnology, 2013, 24(40), 405707

[85]

Conesa-Boj S, Kriegner D, Han X, et al. Gold-free ternary III–V antimonide nanowire arrays on silicon: twin-free down to the first bilayer. Nano Lett, 2014, 14(1), 326

[86]

Plissard S, Dick K A. WallartS, et al Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl Phys Lett, 2010, 96, 121901

[87]

Alhodaib A, Noori Y J, Carrington P J, et al. Room-temperature mid-infrared emission from faceted InAsSb multi quantum wells embedded in InAs nanowires. Nano Lett, 2018, 18(1), 235

[88]

Du W N, Yang X G, Wang X Y, et al. The self-seeded growth of InAsSb nanowires on silicon by metal-organic vapour phase epitaxy. J Cryst Growth, 2014, 396, 33

[89]

Anyebe E A, Zhang Q. Self-catalysed InAs1– xSb x nanowires grown directly on bare Si substrates. Mater Res Bull, 2014, 60, 572

[90]

Zhang Q D, Anyebe E A, Chen R, et al. Sb-induced phase control of InAsSb nanowires grown by molecular beam epitaxy. Nano Lett, 2015, 15(2), 1109

[91]

Du W, Yang X, Pan H, et al. Two different growth mechanisms for Au-free InAsSb nanowires growth on Si substrate. Cryst Growth Des, 2015, 15(5), 2413

[92]

Du W, Yang X, Pan H, et al. Controlled-direction growth of planar InAsSb nanowires on Si substrates without foreign catalysts. Nano Lett, 2016, 16(2), 877

[93]

Zhuang Q D, Alradhi H, Jin Z M, et al. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics. Nanotechnology, 2017, 28(10), 105710

[94]

Anyebe E A, Rajpalke M K, Veal T D, et al. Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1– xSb x nanowires. Nano Res, 2015, 8(4), 1309

[95]

Thompson M D, Alhodaib A, Craig A P, et al. Low Leakage-current InAsSb nanowire photodetectors on silicon. Nano Lett, 2016, 16(1), 182

[96]

Cirlin G E, Reznik R R, Shtrom I V, et al. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates. J Phys D, 2017, 50(48), 484003

[97]

Tambe M J, Lim S K, Smith M J, et al. Realization of defect-free epitaxial core/shell GaAs/AlGaAs nanowire heterostructures. Appl Phys Lett, 2008, 93, 151917

[98]

Titova L V, Hoang T B, Jackson H E, et al. Temperature dependence of photoluminescence from single core–shell GaAs–AlGaAs nanowires. Appl Phys Lett, 2006, 89, 173126

[99]

Hoang T B, Titova L V, Yarrison-Rice J M, et al. Resonant excitation and imaging of non-equilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. Nano Lett, 2007, 7(3), 588

[100]

Koblmuüller G, Mayer B, Stettner T, et al. GaAs-AlGaAs core-shell nanowire lasers on silicon: invited review. Semicond Sci Technol, 2017, 32, 053001

[101]

Saxena D, Mokkapati S, Parkinson P, et al. Optically pumped room-temperature GaAs nanowire lasers. Nat Photonics, 2013, 7, 963

[102]

Heiss M, Fontana Y, Gustafsson A, et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat Mater, 2013, 12, 439

[103]

Chen C, Shehata S, Fradin C R , et al. Self-directed growth of AlGaAs core-shell nanowires for visible applications. Nano Lett, 2007, 7(9), 2584

[104]

Wu Z H, Sun M, Mei X Y, et al. Growth and photoluminescence characteristics of AlGaAs nanowires. Appl Phys Lett, 2004, 85(4), 657

[105]

Dubrovskii V G, Shtrom I V, Reznik R R, et al. Origin of spontaneous core-shell AlGaAs nanowires grown by molecular beam epitaxy. Crys Growth Des, 2016, 16(12), 7251

[106]

Guo J, Hang H, Ding Y, et al. Growth of zinc blende GaAs/AlGaAs heterostructure nanowires on Si substrate by using AlGaAs buffer layers. J Cryst Growth, 2012, 359, 30

[107]

Loitsch B, Winnerl J, Grimaldi G, et al. Crystal phase quantum dots in the ultrathin core of GaAs–AlGaAs core–shell nanowires. Nano Lett, 2015, 15(11), 7544

[108]

Dietrich C P, Fiore A, Thompson M G, et al. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev, 2016, 10(6), 870

[109]

Chen R, Tran T T D, Ng K W, et al. Nanolasers grown on silicon. Nat Photonics, 2011, 5, 170

[110]

Tatebayashi J, Kako S, Ho J, et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photonics, 2015, 9, 501

[111]

Hou J J, Wang F, Han N, et al. Stoichiometric effect on electrical, optical and structural properties of composition-tunable In xGa1– xAs nanowires. ACS Nano, 2012, 6(10), 9320

[112]

Shin J C, Kim D Y, Lee A, et al. Improving the composition uniformity of Au-catalyzed InGaAs nanowires on silicon. J Cryst Growth, 2013, 372, 15

[113]

Shin J C, Kim K H, Hu H, et al. Monolithically grown In xGa1– xAs nanowire array on silicon tandem solar cells with high efficiency. IEEE Photonic Society 24th Annual Meeting, 2011

[114]

Shin J C, Kim K H, Yu K J, et al. In xGa1– xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. Nano Lett, 2011, 11(11), 4831

[115]

Treu J, Speckbacher M, Saller K, et al. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy. Appl Phys Lett, 2016, 108(5), 053110

[116]

Mork?tter S, Funk S, Liang M, et al. Role of microstructure on optical properties in high-uniformity In xGa1– xAs nanowire arrays: Evidence of a wider wurtzite band gap. Phys Rev B, 2013, 87, 205303

[117]

Berg A, Yazdi S, Nowzari A, et al. Radial nanowire light-emitting diodes in the (Al xGa1– x) yIn1– yP material system. Nano Lett, 2016, 16(1), 656

[118]

Kivisaari P, Berg A, Karimi M, et al. Optimization of current injection in AlGaInP core-shell nanowire light-emitting diodes. Nano Lett, 2017, 17(6), 3599

[119]

Li X, Shi T, Liu G, et al. Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III–V nanowire/Si film two-junction solar cells. Opt Express, 2015, 23(19), 25316

[120]

Amiri S E H, Ranga P, Li D Y, et al. Growth of InGaP alloy nanowires with widely tunable bandgaps on silicon substrates. Conference on Lasers and Electro-Optics, 2017

[121]

Tatebayashi J, Lin A, Wong P S, et al. Visible light emission from self-catalyzed GaInP/GaP core-shell double heterostructure nanowires on silicon. J Appl Phys, 2010, 108, 034315

[122]

Fakhr A, Haddara Y M, LaPierre R R. Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions. Nanotechnology, 2010, 21(16), 165601

[123]

Jacobsson D, Persson J M, Kriegner D, et al. Particle-assisted Ga xIn1– xP nanowire growth for designed bandgap structures. Nanotechnology, 2012, 23(24), 245601

[124]

Berg A, Caroff P, Shahid N, et al. Growth and optical properties of In xGa1– xP nanowires synthesized by selective-area epitaxy. Nano Res, 2017, 10(2), 672

[125]

Otnes G, Heurlin M, Zeng X L, et al. InxGa 1–xP nanowire growth dynamics strongly affected by doping using diethylzinc. Nano Lett, 2017, 17(2), 702

[126]

Ghalamestani S G, Ek M, Gamjipour B, et al. Demonstration of defect-free and composition tunable Ga xIn1– xSb nanowires. Nano Lett, 2012, 12(9), 4914

[127]

Zhou H, Pozuelo M, Hicks R F, et al. Self-catalyzed vapour-liquid-solid growth of InP1– xSb x nanostructures. J Cryst Growth, 2011, 319, 25

[128]

Russell H B, Andriotis A N, Menon M, et al. Direct band gap gallium antimony phosphide (GaSb xP1– x) alloys. Sci Rep, 2016, 6, 20822

[129]

Gagliano L, Kruijsse M, Schefold J D D, et al. Efficient green emission from wurtzite Al xIn1– xP nanowires. Nano Lett, 2018, 18(6), 3543

[130]

Mayer B, Rudolph D, Schnell J, et al. Lasing from individual GaAs–AlGaAs core–shell nanowires up to room temperature. Nat Commun, 2013, 4, 2931

[131]

Birowosuto M D, Yokoo A, Zhang G, et al. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nat Mater, 2014, 13, 279

[132]

Ren D, Ahtapodov L, Nilsen J S, et al. Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature. Nano Lett, 2018, 18(4), 2304

[133]

Stettner T, Thurn A, D?blinger M, et al. Tuning lasing emission toward long wavelengths in GaAs-(In,Al)GaAs core-multishell nanowires. Nano Lett, 2018, 18(10), 6292

[134]

Kim H, Lee W J, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 2017, 17, 5244

[135]

Kim H, Farrell A C, Senanayake P, et al. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett, 2016, 16, 1833

[136]

Lee W J, Kim H, You J B, et al. Ultracompact bottom-up photonic crystal lasers on silicon-on-insulator. Sci Rep, 2017, 7, 9543

[137]

Zhang Y, Liu H. Nanowires for high-efficiency, low-cost solar photovoltaics. Crystals, 2019, 9(2), 87

[138]

Lin R, Galan S V, Sun H, et al. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations. Photonics Res, 2018, 6(5), 457

[139]

Zhang Y, Sanchez A M, Aagesen M, et al. Growth and fabrication of high-quality single nanowire devices with radial p–i–n junctions. Small, 2019, 15(3), 1803684

[140]

Holm J V, J?rgensen H I, Krogstrup P, et al. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat Commun, 2013, 4, 1498

[141]

Hou J J, Wang F, Han N, et al. Diameter dependence of electron mobility in InGaAs nanowires. Appl Phys Lett, 2013, 102(9), 093112

[142]

Kilpi O P, Svensson J, Wu J, et al. Vertical InAs/InGaAs heterostructure metal–oxide–semiconductor field-effect transistors on Si. Nano Lett, 2017, 17(10), 6006

[1]

Li Xiaoting, Wang Tao, Wang Jingwei, Wang Yiding, Yin Jingzhi, Sai Xiaofeng, Gao Hongkai, Zhang Zhiyong. Growth and Characterisation of InAsSb Ternary Layers on (101) GaSb Substrates by LP-MOCVD. J. Semicond., 2005, 26(12): 2298.

[2]

Song Zhen, Ou Guping, Liu Fengmin. Growth Mode of PTCDA on p-Si Substrates. J. Semicond., 2007, 28(7): 1009.

[3]

Li Yuguo, Yang Aichun, Zhuo Boshi, Peng Ruiqin, Zheng Xuelei. Growth of SiO2 nanowires on different substrates using Au as a catalyst. J. Semicond., 2011, 32(2): 023002. doi: 10.1088/1674-4926/32/2/023002

[4]

Deng Hong, Tang Bin, Cheng He, Wei Min, Chen Jinju. Horizontal Growth and Ultraviolet Sensitivity Characteristics of ZnO Nanowires on Sapphire Substrates. J. Semicond., 2007, 28(1): 56.

[5]

Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

[6]

Tetsuya Shimogaki, Masahiro Takahashi, Masaaki Yamasaki, Taichi Fukuda, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada. Catalyst-free growth of ZnO nanowires on various-oriented sapphire substrates by pulsed-laser deposition. J. Semicond., 2016, 37(2): 023001. doi: 10.1088/1674-4926/37/2/023001

[7]

Xiao Hongling, Wang Xiaoliang, Han Qin, Wang Junxi, Zhang Nanhong, Xu Yingqiang, Liu Hongxin, Zeng Yiping, Li Jinmin, Wu Ronghan. Effect of V/III Flux Ratio and Growth Temperature on Indium Droplet Formation During RF-MBE Growth of InN. J. Semicond., 2005, 26(S1): 16.

[8]

Liu Zhe, Wang Junxi, Li Jinmin, Liu Hongxin, Wang Qiyuan, Wang Jun, Zhang Nanhong, Xiao Hongling, Wang Xiaoliang, Zeng Yiping. Growth of GaN on γ-Al2O3/Si(001) Composite Substrates. J. Semicond., 2005, 26(12): 2378.

[9]

Wang Lei, Sun Guosheng, Gao Xin, Zhao Wanshun, Zhang Yongxing, Zeng Yiping, Li Jinmin. LPCVD Homoepitaxial Growth on Off-Axis Si-Face 4H-SiC(0001) Substrates. J. Semicond., 2005, 26(S1): 113.

[10]

Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304

[11]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[12]

Jun Zheng, Zhi Liu, Chunlai Xue, Chuanbo Li, Yuhua Zuo, Buwen Cheng, Qiming Wang. Recent progress in GeSn growth and GeSn-based photonic devices. J. Semicond., 2018, 39(6): 061006. doi: 10.1088/1674-4926/39/6/061006

[13]

Hao Yue, Zhang Jinfeng, Shen Bo, Liu Xinyu. Progress in Group III nitride semiconductor electronic devices. J. Semicond., 2012, 33(8): 081001. doi: 10.1088/1674-4926/33/8/081001

[14]

Xiao Hongling, Wang Xiaoliang, Yang Cuibai, Hu Guoxin, Ran Junxue, Wang Cuimei, Zhang Xiaobin, Li Jianping, Li Jinmin. MOCVD Growth of InN Films on Sapphire Substrates. J. Semicond., 2007, 28(S1): 260.

[15]

Yufeng Zhao, Xinhua Li, Wenbo Wang, Bukang Zhou, Huahua Duan, Tongfei Shi, Xuesong Zeng, Ning Li, Yuqi Wang. Growth and properties of GaAs nanowires on fused quartz substrate. J. Semicond., 2014, 35(9): 093002. doi: 10.1088/1674-4926/35/9/093002

[16]

Xu Qingqing, Chen Xinqiang, Wei Yanfeng, Yang Jianrong, Chen Lu. LPE Growth and Characterization of HgCdTe on Si Based Substrate. J. Semicond., 2007, 28(7): 1078.

[17]

Wang Bing, Xu Ping, Yang Guowei. Low-Temperature Growth and Photoluminescence of SnO2 Nanowires. J. Semicond., 2008, 29(8): 1469.

[18]

Ye Xian, Huang Hui, Guo Jingwei, Ren Xiaomin, Huang Yongqing, Wang Qi. Size-independent growth of pure zinc blende GaAs nanowires. J. Semicond., 2010, 31(7): 073001. doi: 10.1088/1674-4926/31/7/073001

[19]

Meng Hui, Wang Cong. Growth and Characterization of Zn Doped SnO2 Nanowires. J. Semicond., 2007, 28(S1): 267.

[20]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1?xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

Search

Advanced Search >>

GET CITATION

G Boras, X Z Yu, H Y Liu, 合乐彩票[J]. J. Semicond., 2019, 40(10): 101301. doi: 10.1088/1674-4926/40/10/101301.

Export: BibTex EndNote

Article Metrics

Article views: 311 Times PDF downloads: 33 Times Cited by: 0 Times

History

Manuscript received: 01 July 2019 Manuscript revised: 09 September 2019 Online: Accepted Manuscript: 12 September 2019 Uncorrected proof: 29 September 2019 Corrected proof: 17 October 2019 Published: 01 October 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤