J. Semicond. > Volume 40?>?Issue 8?> Article Number: 081501

合乐彩票

Qiang Cao , and Shishen Yan ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room temperature magnetic semiconductors with strong and controllable s, p-d exchange interaction. With this s, p-d exchange interaction, one can utilize the spin degree of freedom to design applicable spintronics devices with very attractive functions that are not available in conventional semiconductors. Here, we first review the progress in understanding of this particular material and the dilemma to prepare a room temperature magnetic semiconductor. Then we discuss recent experimental progresses to pursue strong s, p-d interaction to realize room temperature magnetic semiconductors, which are achieved by introducing a very high concentration of magnetic atoms by means of low-temperature nonequilibrium growth.

Key words: magnetic semiconductorss, p-d interactionhigh concentration of magnetic atomslow temperature nonequilibrium growthsemiconductor spintronics

Abstract: Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room temperature magnetic semiconductors with strong and controllable s, p-d exchange interaction. With this s, p-d exchange interaction, one can utilize the spin degree of freedom to design applicable spintronics devices with very attractive functions that are not available in conventional semiconductors. Here, we first review the progress in understanding of this particular material and the dilemma to prepare a room temperature magnetic semiconductor. Then we discuss recent experimental progresses to pursue strong s, p-d interaction to realize room temperature magnetic semiconductors, which are achieved by introducing a very high concentration of magnetic atoms by means of low-temperature nonequilibrium growth.

Key words: magnetic semiconductorss, p-d interactionhigh concentration of magnetic atomslow temperature nonequilibrium growthsemiconductor spintronics



References:

[1]

Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: a spin-based electronics vision for the future. Science, 2001, 294, 1488

[2]

Ando K. Seeking Room-temperature ferromagnetic semiconductors. Science, 2006, 312, 1883

[3]

Fabian A M A J, Ertler C, Stano P, et al. Semiconductor spintronics. Acta Physica Slovaca, 2007, 57, 565

[4]

Jungwirth T. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 2014, 86, 855

[5]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965

[6]

Chambers S. Is it really intrinsic ferromagnetism. Nat Mater, 2010, 9, 956

[7]

Seife C. Can the laws of physics be unified. Science, 2005, 309, 82

[8]

Chambers S, Droubay T, Wang C, et al. Ferromagnetism in oxide semiconductors. Mater Today, 2006, 9, 28

[9]

Mauger A, Godart C. The magnetic, optical, and transport properties of representatives of a class of magnetic semiconductors: The europium chalcogenides. Phys Rep, 1986, 141, 51

[10]

Furdyna J K. Diluted magnetic semiconductors. J Appl Phys, 1988, 64, R29

[11]

Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951

[12]

Matthias B T, Bozorth R M, Vleck J H Van. Ferromagnetic interaction in EuO. Phys Rev Lett, 1961, 7, 160

[13]

Zhao L, Zhang B, Pang Q, et al. Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals. Appl Phys Lett, 2006, 89, 092111

[14]

Pekarek T M, Miotkowski I, Crooker B C. Magnetic measurements on Cd1– xCr xTe and Zn1– xCr xTe. J Appl Phys, 1996, 79, 6436

[15]

Jain M K. Diluted magnetic semiconductors. Singapore: World Scientific Publishing Co. Ltd., 1991

[16]

Turner A E, Gunshor R L, Datta S. New class of materials for optical isolators. Appl Opt, 1983, 22, 3152

[17]

Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363

[18]

Wang H, Chen L, Zhao J. Enhancement of the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As. Sci Chin Phys, Mechan Astron, 2013, 56, 99

[19]

Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408, 944

[20]

Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 1999, 402, 790

[21]

Jeudy V, Curiale J, Adam J P, et al. Current induced domain wall motion in GaMnAs close to the Curie temperature. J Phys: Conden Matter, 2011, 23, 446004

[22]

Yamanouchi M, Chiba D, Matsukura F, et al. Current-assisted domain wall motion in ferromagnetic semiconductors. Jpn J Appl Phys, 2006, 45, 3854

[23]

Chernyshov A, Overby M, Liu X, et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat Phys, 2009, 5, 656

[24]

Jaworski C M, Yang J, Mack S, et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater, 2010, 9, 898

[25]

Jaworski C M, Yang J, Mack S, et al. Spin-Seebeck effect: a phonon driven spin distribution. Phys Rev Lett, 2011, 106

[26]

Tang H X, Kawakami R K, Awschalom D D, et al. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys Rev Lett, 2003, 90, 107201

[27]

Gould C, Rüster C, Jungwirth T, et al. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett, 2004, 93, 117203

[28]

Olejník K, Owen M H S, Novák V., et al Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga,Mn)As: A surface oxide control study. Phys Rev B, 2008, 78, 054403

[29]

Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584

[30]

Dietl T, Ohno H, Matsukura F, et al. Zener Model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019

[31]

Hong N H, Sakai J, Hassini A. Magnetic properties of V-doped ZnO thin films. J Appl Phys, 2005, 97, 10D312

[32]

Ramachandran S, Tiwari A, Narayan J, et al. Epitaxial growth and properties of Zn1– xV xO diluted magnetic semiconductor thin films. Appl Phys Lett, 2005, 87, 172502

[33]

Saeki H, Tabata H, Kawai T. Magnetic and electric properties of vanadium doped ZnO films. Solid State Commun, 2001, 120, 439

[34]

Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett, 2004, 93, 177206

[35]

Hong N H, Sakai J, Huong N T, et al. Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys Rev B, 2005, 72, 045336

[36]

Fan J P, Quan Z Y, Xu X H. Tunable magnetic and transport properties of p-type ZnMnO films with n-type Ga, Cr, and Fe codopants. Appl Phys Lett, 2013, 102, 102407

[37]

Kundaliya D C, Ogale S B, Lofland S E, et al. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system. Nat Mater, 2004, 3, 709

[38]

Cheng X M, Chien C L. Magnetic properties of epitaxial Mn-doped ZnO thin films. J Appl Phys, 2003, 93, 7876

[39]

Sharma P, Gupta A, Rao K V, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mater, 2003, 2, 673

[40]

Norton D P, Pearton S J, Hebard A F, et al. Ferromagnetism in Mn-implanted ZnO: Sn single crystals. Appl Phys Lett, 2003, 82, 239

[41]

Park S Y, Kim P J, Lee Y P, et al. Realization of room-temperature ferromagnetism and of improved carrier mobility in Mn-doped ZnO film by oxygen deficiency, introduced by hydrogen and heat treatments. Adv Mater, 2007, 19, 3496

[42]

Cao Q, Fu M, Liu G, et al. Local vibrational modes competitions in Mn-doped ZnO epitaxial films with tunable ferromagnetism. J Appl Phys, 2014, 115, 243906

[43]

Wei X X, Song C, Geng K W, et al. Local Fe structure and ferromagnetism in Fe-doped ZnO films. J Phys: Conden Matter, 2006, 18, 7471

[44]

Liu G L, Cao Q, Deng J X, et al. High Tc ferromagnetism of Zn1– xCo xO diluted magnetic semiconductors grown by oxygen plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2007, 90, 052504

[45]

Cao Q, Deng J X, Liu G L, et al. Epitaxial properties of Co-doped ZnO thin films grown by plasma assisted molecular beam epitaxy. Chin Phys Lett, 2007, 24, 2951

[46]

Cao Q, He S, Deng Y, et al. Raman scattering investigations on Co-doped ZnO epitaxial films: Local vibration modes and defect associated ferromagnetism. Curr Appl Phys, 2014, 14, 744

[47]

Chen Z Y, Chen Z Q, Zou B, et al. Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy. J Appl Phys, 2012, 112, 083905

[48]

Wakano T, Fujimura N, Morinaga Y, et al. Magnetic and magneto-transport properties of ZnO: Ni films. Physica E, 2001, 10, 260

[49]

Buchholz D B, Chang R P H, Song J Y, et al. Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl Phys Lett, 2005, 87, 082504

[50]

Sudakar C, Thakur J S, Lawes G, et al. Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films. Phys Rev B, 2007, 75, 054423

[51]

Huang J C A, Hsu H S. Inspection of magnetic semiconductor and clustering structure in CoFe-doped ZnO films by bias-dependent impedance spectroscopy. Appl Phys Lett, 2005, 87, 132503

[52]

Cho Y M, Choo W K, Kim H, et al. Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1– x(Co0.5Fe0.5) xO thin films. Appl Phys Lett, 2002, 80, 3358

[53]

Karmakar D, Rao T V C, Yakhmi J V, et al. Electronic structure and magnetic properties of (Fe,Co)-codoped ZnO: Theory and experiment. Phys Rev B, 2010, 81, 184421

[54]

Lisenkov S, Andriotis A N, Sheetz R M, et al. Effects of codoping on the ferromagnetic enhancement in ZnO. Phys Rev B, 2011, 83, 235203

[55]

Duan L B, Rao G H, Wang Y C, et al. Magnetization and Raman scattering studies of (Co, Mn) codoped ZnO nanoparticles. J Appl Phys, 2008, 104, 013909

[56]

Coey J M, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 2005, 4, 173

[57]

Kaspar T, Droubay T, Heald S, et al. Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys Rev B, 2008, 77, 201303(R)

[58]

Jedrecy N, Bardeleben H J von, Demaille D. High-temperature ferromagnetism by means of oriented nanocolumns: Co clustering in (Zn,Co)O. Phys Rev B, 2009, 80, 205204

[59]

Zhu D, Liu G, Tian Y, et al. Decoupled scenario between the conductive carriers and the ferromagnetism in epitaxial Zn0.85– xMg xCo0.15O thin films. Appl Phys Lett, 2014, 105, 072404

[60]

Chiou J W, Tsai H M, Pao C W, et al. Role of valence-band Co 3d states on ferromagnetism in Zn1– xCo xO nanorods. Appl Phys Lett, 2007, 90, 062103

[61]

Kobayashi M, Ishida Y, Hwang J, et al. Characterization of magnetic components in the diluted magnetic semiconductor Zn1– xCo xO by X-ray magnetic circular dichroism. Phys Rev B, 2005, 72, 201201

[62]

Editorial. More than just room temperature. Nat Mater, 2010, 9, 951

[63]

Zunger A, Lany S, Raebiger H. The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory. Physics, 2010, 3, 53

[64]

Chang C Z, Feng X, Shen J, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340, 167

[65]

Wang Z, Tang C, Sachs R, et al. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys Rev Lett, 2015, 114, 016603

[66]

Zhou J, Wang Q, Sun Q, et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett, 2009, 9, 3867

[67]

Soriano D, Leconte N, Ordejón P, et al. Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene. Phys Rev Lett, 2011, 107, 016602

[68]

Uchoa B, Kotov V N, Peres N M R, et al. Localized magnetic states in graphene. Phys Rev Lett, 2008, 101, 026805

[69]

Yazyev O V. Magnetism in disordered graphene and irradiated graphite. Phys Rev Lett, 2008, 101, 037203

[70]

Faccio R, Pardo H, Denis P A, et al. Magnetism induced by single carbon vacancies in a three-dimensional graphitic network. Phys Rev B, 2008, 77, 035416

[71]

Castro E V, Peres N M R, Stauber T, et al. Low-density ferromagnetism in biased bilayer graphene. Phys Rev Lett, 2008, 100, 186803

[72]

Wang Y, Huang Y, Song Y, et al. Room-temperature ferromagnetism of graphene. Nano Lett, 2009, 9, 220

[73]

Matte H S S R, Subrahmanyam K S, Rao C N R. Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C, 2009, 113, 9982

[74]

Xie L, Wang X, Lu J, et al. Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Appl Phys Lett, 2011, 98, 193113

[75]

Candini A, Alvino C, Wernsdorfer W, et al. Hysteresis loops of magnetoconductance in graphene devices. Phys Rev B, 2011, 83, 121401

[76]

Sepioni M, Nair R R, Rablen S, et al. Limits on intrinsic magnetism in graphene. Phys Rev Lett, 2010, 105, 207205

[77]

Nair R R, Sepioni M, Tsai I L, et al. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 2012, 8, 199

[78]

Zhang H, Chhowalla M, Liu Z. 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev, 2018, 47, 3015

[79]

Wang X, Song Z, Wen W, et al. Potential 2D materials with phase transitions: structure, synthesis, and device applications. Adv Mater, 2018, 1804682

[80]

Shi J, Hong M, Zhang Z, et al. Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coord Chem Rev, 2018, 376, 1

[81]

Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys Rev B, 2013, 87, 195201

[82]

Mishra R, Zhou W, Pennycook S J, et al. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B, 2013, 88, 144409

[83]

Sun L, Zhou W, Liang Y, et al. Magnetic properties in Fe-doped SnS2: Density functional calculations. Comput Mater Sci, 2016, 117, 489

[84]

Seixas L, Carvalho A, Neto A H Castro. Atomically thin dilute magnetism in Co-doped phosphorene. Phys Rev B, 2015, 91, 155138

[85]

Li B, Xing T, Zhong M, et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 2017, 8, 1958

[86]

Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265

[87]

Huang B, Clark G, Moratalla N, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270

[88]

Griffiths R B. Peierls proof of spontaneous magnetization in a two-dimensional ising ferromagnet. Phys Rev, 1964, 136, A437

[89]

Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett, 1966, 17, 1133

[90]

Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 2018, 13, 554

[91]

Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406

[92]

Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549

[93]

Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 2018, 13, 544

[94]

Anderson P W. Localized magnetic states in metals. Phys Rev, 1961, 124, 41

[95]

Schrieffer J R, Wolff P A. Relation between the Anderson and Kondo Hamiltonians. Phys Rev, 1966, 149, 491

[96]

MacDonald A H, Schiffer P, Samarth N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat Mater, 2005, 4, 195

[97]

Zeng Y J, Gauquelin N, Li D Y, et al. Co-rich ZnCoO nanoparticles embedded in wurtzite Zn1– xCo xO thin films: possible origin of superconductivity. ACS Appl Mater Interfaces, 2015, 7, 22166

[98]

Akaiwa K, Kaneko K, Fujita S, et al. Room temperature ferromagnetism in conducting α-(In1– xFe x)2O3 alloy films. Appl Phys Lett, 2015, 106, 062405

[99]

Tu N T, Hai P N, Anh L D, et al. Magnetic properties and intrinsic ferromagnetism in (Ga,Fe)Sb ferromagnetic semiconductors. Phys Rev B, 2015, 92, 144403

[100]

Li L, Guo Y, Cui X Y, et al. Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys Rev B, 2012, 85, 174430

[101]

Cao Q, Zhu D, Fu M, et al. Robust ferromagnetism of single crystalline Co xZn1– xO (0.3 ≤ x ≤ 0.45) epitaxial films with high Co concentration. Appl Phys Lett, 2016, 109, 052404

[102]

Cao Q, Fu M, Zhu D, et al. Enhancing s, p-d exchange interactions at room temperature by carrier doping in single crystalline Co0.4Zn0.6O epitaxial films. Appl Phys Lett, 2017, 110, 092402

[103]

Cao Q, Fu M, Zhu D, et al. Growth-controlled engineering of magnetic exchange interactions in single crystalline GaCo- ZnO1-v epitaxial films with high Co concentration. Chem Mater, 2017, 29, 2717

[104]

Redman M J, Steward E G. Cobaltous oxide with the zinc blende/wurtzite-type crystal structure. Nature, 1962, 193, 867

[105]

Yan S S, Ren C, Wang X, et al. Ferromagnetism and magnetoresistance of Co–ZnO inhomogeneous magnetic semiconductor. Appl Phys Lett, 2004, 84, 2376

[106]

Song H Q, Mei L M, Yan S S, et al. Microstructure, ferromagnetism, and magnetic transport of Ti1– xCo xO2 amorphous magnetic semiconductor. J Appl Phys, 2006, 99, 123903

[107]

Yan S S, Liu J P, Mei L M, et al. Spin-dependent variable range hopping and magnetoresistance in Ti1– xCo xO2 and Zn1– xCo xO magnetic semiconductor films. J Phys: Condens Matter, 2006, 18, 10469

[108]

Tian Y F, Yan S S, Zhao M W, et al. Controllable spin- polarized electrical transport in wide-band-gap oxide ferromagnetic semiconductors. J Appl Phys, 2010, 107, 033713

[1]

Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: a spin-based electronics vision for the future. Science, 2001, 294, 1488

[2]

Ando K. Seeking Room-temperature ferromagnetic semiconductors. Science, 2006, 312, 1883

[3]

Fabian A M A J, Ertler C, Stano P, et al. Semiconductor spintronics. Acta Physica Slovaca, 2007, 57, 565

[4]

Jungwirth T. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 2014, 86, 855

[5]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965

[6]

Chambers S. Is it really intrinsic ferromagnetism. Nat Mater, 2010, 9, 956

[7]

Seife C. Can the laws of physics be unified. Science, 2005, 309, 82

[8]

Chambers S, Droubay T, Wang C, et al. Ferromagnetism in oxide semiconductors. Mater Today, 2006, 9, 28

[9]

Mauger A, Godart C. The magnetic, optical, and transport properties of representatives of a class of magnetic semiconductors: The europium chalcogenides. Phys Rep, 1986, 141, 51

[10]

Furdyna J K. Diluted magnetic semiconductors. J Appl Phys, 1988, 64, R29

[11]

Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951

[12]

Matthias B T, Bozorth R M, Vleck J H Van. Ferromagnetic interaction in EuO. Phys Rev Lett, 1961, 7, 160

[13]

Zhao L, Zhang B, Pang Q, et al. Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals. Appl Phys Lett, 2006, 89, 092111

[14]

Pekarek T M, Miotkowski I, Crooker B C. Magnetic measurements on Cd1– xCr xTe and Zn1– xCr xTe. J Appl Phys, 1996, 79, 6436

[15]

Jain M K. Diluted magnetic semiconductors. Singapore: World Scientific Publishing Co. Ltd., 1991

[16]

Turner A E, Gunshor R L, Datta S. New class of materials for optical isolators. Appl Opt, 1983, 22, 3152

[17]

Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363

[18]

Wang H, Chen L, Zhao J. Enhancement of the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As. Sci Chin Phys, Mechan Astron, 2013, 56, 99

[19]

Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408, 944

[20]

Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 1999, 402, 790

[21]

Jeudy V, Curiale J, Adam J P, et al. Current induced domain wall motion in GaMnAs close to the Curie temperature. J Phys: Conden Matter, 2011, 23, 446004

[22]

Yamanouchi M, Chiba D, Matsukura F, et al. Current-assisted domain wall motion in ferromagnetic semiconductors. Jpn J Appl Phys, 2006, 45, 3854

[23]

Chernyshov A, Overby M, Liu X, et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat Phys, 2009, 5, 656

[24]

Jaworski C M, Yang J, Mack S, et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater, 2010, 9, 898

[25]

Jaworski C M, Yang J, Mack S, et al. Spin-Seebeck effect: a phonon driven spin distribution. Phys Rev Lett, 2011, 106

[26]

Tang H X, Kawakami R K, Awschalom D D, et al. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys Rev Lett, 2003, 90, 107201

[27]

Gould C, Rüster C, Jungwirth T, et al. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett, 2004, 93, 117203

[28]

Olejník K, Owen M H S, Novák V., et al Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga,Mn)As: A surface oxide control study. Phys Rev B, 2008, 78, 054403

[29]

Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584

[30]

Dietl T, Ohno H, Matsukura F, et al. Zener Model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019

[31]

Hong N H, Sakai J, Hassini A. Magnetic properties of V-doped ZnO thin films. J Appl Phys, 2005, 97, 10D312

[32]

Ramachandran S, Tiwari A, Narayan J, et al. Epitaxial growth and properties of Zn1– xV xO diluted magnetic semiconductor thin films. Appl Phys Lett, 2005, 87, 172502

[33]

Saeki H, Tabata H, Kawai T. Magnetic and electric properties of vanadium doped ZnO films. Solid State Commun, 2001, 120, 439

[34]

Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett, 2004, 93, 177206

[35]

Hong N H, Sakai J, Huong N T, et al. Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys Rev B, 2005, 72, 045336

[36]

Fan J P, Quan Z Y, Xu X H. Tunable magnetic and transport properties of p-type ZnMnO films with n-type Ga, Cr, and Fe codopants. Appl Phys Lett, 2013, 102, 102407

[37]

Kundaliya D C, Ogale S B, Lofland S E, et al. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system. Nat Mater, 2004, 3, 709

[38]

Cheng X M, Chien C L. Magnetic properties of epitaxial Mn-doped ZnO thin films. J Appl Phys, 2003, 93, 7876

[39]

Sharma P, Gupta A, Rao K V, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mater, 2003, 2, 673

[40]

Norton D P, Pearton S J, Hebard A F, et al. Ferromagnetism in Mn-implanted ZnO: Sn single crystals. Appl Phys Lett, 2003, 82, 239

[41]

Park S Y, Kim P J, Lee Y P, et al. Realization of room-temperature ferromagnetism and of improved carrier mobility in Mn-doped ZnO film by oxygen deficiency, introduced by hydrogen and heat treatments. Adv Mater, 2007, 19, 3496

[42]

Cao Q, Fu M, Liu G, et al. Local vibrational modes competitions in Mn-doped ZnO epitaxial films with tunable ferromagnetism. J Appl Phys, 2014, 115, 243906

[43]

Wei X X, Song C, Geng K W, et al. Local Fe structure and ferromagnetism in Fe-doped ZnO films. J Phys: Conden Matter, 2006, 18, 7471

[44]

Liu G L, Cao Q, Deng J X, et al. High Tc ferromagnetism of Zn1– xCo xO diluted magnetic semiconductors grown by oxygen plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2007, 90, 052504

[45]

Cao Q, Deng J X, Liu G L, et al. Epitaxial properties of Co-doped ZnO thin films grown by plasma assisted molecular beam epitaxy. Chin Phys Lett, 2007, 24, 2951

[46]

Cao Q, He S, Deng Y, et al. Raman scattering investigations on Co-doped ZnO epitaxial films: Local vibration modes and defect associated ferromagnetism. Curr Appl Phys, 2014, 14, 744

[47]

Chen Z Y, Chen Z Q, Zou B, et al. Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy. J Appl Phys, 2012, 112, 083905

[48]

Wakano T, Fujimura N, Morinaga Y, et al. Magnetic and magneto-transport properties of ZnO: Ni films. Physica E, 2001, 10, 260

[49]

Buchholz D B, Chang R P H, Song J Y, et al. Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl Phys Lett, 2005, 87, 082504

[50]

Sudakar C, Thakur J S, Lawes G, et al. Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films. Phys Rev B, 2007, 75, 054423

[51]

Huang J C A, Hsu H S. Inspection of magnetic semiconductor and clustering structure in CoFe-doped ZnO films by bias-dependent impedance spectroscopy. Appl Phys Lett, 2005, 87, 132503

[52]

Cho Y M, Choo W K, Kim H, et al. Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1– x(Co0.5Fe0.5) xO thin films. Appl Phys Lett, 2002, 80, 3358

[53]

Karmakar D, Rao T V C, Yakhmi J V, et al. Electronic structure and magnetic properties of (Fe,Co)-codoped ZnO: Theory and experiment. Phys Rev B, 2010, 81, 184421

[54]

Lisenkov S, Andriotis A N, Sheetz R M, et al. Effects of codoping on the ferromagnetic enhancement in ZnO. Phys Rev B, 2011, 83, 235203

[55]

Duan L B, Rao G H, Wang Y C, et al. Magnetization and Raman scattering studies of (Co, Mn) codoped ZnO nanoparticles. J Appl Phys, 2008, 104, 013909

[56]

Coey J M, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 2005, 4, 173

[57]

Kaspar T, Droubay T, Heald S, et al. Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys Rev B, 2008, 77, 201303(R)

[58]

Jedrecy N, Bardeleben H J von, Demaille D. High-temperature ferromagnetism by means of oriented nanocolumns: Co clustering in (Zn,Co)O. Phys Rev B, 2009, 80, 205204

[59]

Zhu D, Liu G, Tian Y, et al. Decoupled scenario between the conductive carriers and the ferromagnetism in epitaxial Zn0.85– xMg xCo0.15O thin films. Appl Phys Lett, 2014, 105, 072404

[60]

Chiou J W, Tsai H M, Pao C W, et al. Role of valence-band Co 3d states on ferromagnetism in Zn1– xCo xO nanorods. Appl Phys Lett, 2007, 90, 062103

[61]

Kobayashi M, Ishida Y, Hwang J, et al. Characterization of magnetic components in the diluted magnetic semiconductor Zn1– xCo xO by X-ray magnetic circular dichroism. Phys Rev B, 2005, 72, 201201

[62]

Editorial. More than just room temperature. Nat Mater, 2010, 9, 951

[63]

Zunger A, Lany S, Raebiger H. The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory. Physics, 2010, 3, 53

[64]

Chang C Z, Feng X, Shen J, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340, 167

[65]

Wang Z, Tang C, Sachs R, et al. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys Rev Lett, 2015, 114, 016603

[66]

Zhou J, Wang Q, Sun Q, et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett, 2009, 9, 3867

[67]

Soriano D, Leconte N, Ordejón P, et al. Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene. Phys Rev Lett, 2011, 107, 016602

[68]

Uchoa B, Kotov V N, Peres N M R, et al. Localized magnetic states in graphene. Phys Rev Lett, 2008, 101, 026805

[69]

Yazyev O V. Magnetism in disordered graphene and irradiated graphite. Phys Rev Lett, 2008, 101, 037203

[70]

Faccio R, Pardo H, Denis P A, et al. Magnetism induced by single carbon vacancies in a three-dimensional graphitic network. Phys Rev B, 2008, 77, 035416

[71]

Castro E V, Peres N M R, Stauber T, et al. Low-density ferromagnetism in biased bilayer graphene. Phys Rev Lett, 2008, 100, 186803

[72]

Wang Y, Huang Y, Song Y, et al. Room-temperature ferromagnetism of graphene. Nano Lett, 2009, 9, 220

[73]

Matte H S S R, Subrahmanyam K S, Rao C N R. Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C, 2009, 113, 9982

[74]

Xie L, Wang X, Lu J, et al. Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Appl Phys Lett, 2011, 98, 193113

[75]

Candini A, Alvino C, Wernsdorfer W, et al. Hysteresis loops of magnetoconductance in graphene devices. Phys Rev B, 2011, 83, 121401

[76]

Sepioni M, Nair R R, Rablen S, et al. Limits on intrinsic magnetism in graphene. Phys Rev Lett, 2010, 105, 207205

[77]

Nair R R, Sepioni M, Tsai I L, et al. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 2012, 8, 199

[78]

Zhang H, Chhowalla M, Liu Z. 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev, 2018, 47, 3015

[79]

Wang X, Song Z, Wen W, et al. Potential 2D materials with phase transitions: structure, synthesis, and device applications. Adv Mater, 2018, 1804682

[80]

Shi J, Hong M, Zhang Z, et al. Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coord Chem Rev, 2018, 376, 1

[81]

Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys Rev B, 2013, 87, 195201

[82]

Mishra R, Zhou W, Pennycook S J, et al. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B, 2013, 88, 144409

[83]

Sun L, Zhou W, Liang Y, et al. Magnetic properties in Fe-doped SnS2: Density functional calculations. Comput Mater Sci, 2016, 117, 489

[84]

Seixas L, Carvalho A, Neto A H Castro. Atomically thin dilute magnetism in Co-doped phosphorene. Phys Rev B, 2015, 91, 155138

[85]

Li B, Xing T, Zhong M, et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 2017, 8, 1958

[86]

Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265

[87]

Huang B, Clark G, Moratalla N, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270

[88]

Griffiths R B. Peierls proof of spontaneous magnetization in a two-dimensional ising ferromagnet. Phys Rev, 1964, 136, A437

[89]

Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett, 1966, 17, 1133

[90]

Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 2018, 13, 554

[91]

Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406

[92]

Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549

[93]

Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 2018, 13, 544

[94]

Anderson P W. Localized magnetic states in metals. Phys Rev, 1961, 124, 41

[95]

Schrieffer J R, Wolff P A. Relation between the Anderson and Kondo Hamiltonians. Phys Rev, 1966, 149, 491

[96]

MacDonald A H, Schiffer P, Samarth N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat Mater, 2005, 4, 195

[97]

Zeng Y J, Gauquelin N, Li D Y, et al. Co-rich ZnCoO nanoparticles embedded in wurtzite Zn1– xCo xO thin films: possible origin of superconductivity. ACS Appl Mater Interfaces, 2015, 7, 22166

[98]

Akaiwa K, Kaneko K, Fujita S, et al. Room temperature ferromagnetism in conducting α-(In1– xFe x)2O3 alloy films. Appl Phys Lett, 2015, 106, 062405

[99]

Tu N T, Hai P N, Anh L D, et al. Magnetic properties and intrinsic ferromagnetism in (Ga,Fe)Sb ferromagnetic semiconductors. Phys Rev B, 2015, 92, 144403

[100]

Li L, Guo Y, Cui X Y, et al. Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys Rev B, 2012, 85, 174430

[101]

Cao Q, Zhu D, Fu M, et al. Robust ferromagnetism of single crystalline Co xZn1– xO (0.3 ≤ x ≤ 0.45) epitaxial films with high Co concentration. Appl Phys Lett, 2016, 109, 052404

[102]

Cao Q, Fu M, Zhu D, et al. Enhancing s, p-d exchange interactions at room temperature by carrier doping in single crystalline Co0.4Zn0.6O epitaxial films. Appl Phys Lett, 2017, 110, 092402

[103]

Cao Q, Fu M, Zhu D, et al. Growth-controlled engineering of magnetic exchange interactions in single crystalline GaCo- ZnO1-v epitaxial films with high Co concentration. Chem Mater, 2017, 29, 2717

[104]

Redman M J, Steward E G. Cobaltous oxide with the zinc blende/wurtzite-type crystal structure. Nature, 1962, 193, 867

[105]

Yan S S, Ren C, Wang X, et al. Ferromagnetism and magnetoresistance of Co–ZnO inhomogeneous magnetic semiconductor. Appl Phys Lett, 2004, 84, 2376

[106]

Song H Q, Mei L M, Yan S S, et al. Microstructure, ferromagnetism, and magnetic transport of Ti1– xCo xO2 amorphous magnetic semiconductor. J Appl Phys, 2006, 99, 123903

[107]

Yan S S, Liu J P, Mei L M, et al. Spin-dependent variable range hopping and magnetoresistance in Ti1– xCo xO2 and Zn1– xCo xO magnetic semiconductor films. J Phys: Condens Matter, 2006, 18, 10469

[108]

Tian Y F, Yan S S, Zhao M W, et al. Controllable spin- polarized electrical transport in wide-band-gap oxide ferromagnetic semiconductors. J Appl Phys, 2010, 107, 033713

[1]

Tomasz Dietl, Alberta Bonanni, Hideo Ohno. Families of magnetic semiconductors — an overview. J. Semicond., 2019, 40(8): 080301. doi: 10.1088/1674-4926/40/8/080301

[2]

Na Chen, Kaixuan Fang, Hongxia Zhang, Yingqi Zhang, Wenjian Liu, Kefu Yao, Zhengjun Zhang. Amorphous magnetic semiconductors with Curie temperatures above room temperature. J. Semicond., 2019, 40(8): 081510. doi: 10.1088/1674-4926/40/8/081510

[3]

Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504

[4]

Xinyu Liu, Dahai Wei, Jianhua Zhao. Preface to the Special Issue on Challenges and Possibilities of Magnetic Semiconductors. J. Semicond., 2019, 40(8): 080101. doi: 10.1088/1674-4926/40/8/080101

[5]

Yilun Gu, Shengli Guo, Fanlong Ning. Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR. J. Semicond., 2019, 40(8): 081506. doi: 10.1088/1674-4926/40/8/081506

[6]

Guoqiang Zhao, Zheng Deng, Changqing Jin. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping. J. Semicond., 2019, 40(8): 081505. doi: 10.1088/1674-4926/40/8/081505

[7]

Tao Zhikuo, Zhang Rong, Xiu Xiangqian, Cui Xugao, Li Li, Li Xin, Xie ZiLi, Zheng Youdou, Zheng Rongkun, Simon P Ringer. Microstructural properties of over-doped GaN-based diluted magnetic semiconductors grown by MOCVD. J. Semicond., 2012, 33(7): 073002. doi: 10.1088/1674-4926/33/7/073002

[8]

P. Paradeo. Magnetic polarization of a Mn-doped semiconductor nanostructure controlled by an external bias. J. Semicond., 2015, 36(7): 073002. doi: 10.1088/1674-4926/36/7/073002

[9]

Zeng Yugang, Han Genquan, Yu Jinzhong. Growth of SiGe by D-UHV/CVD at Low Temperature. J. Semicond., 2008, 29(10): 1889.

[10]

Yunchang Xiao, Changyong Zhu, Rixing Wang. Arbitrary magnetic field modulations to a semiconductor pump with two types of spin-orbit couplings. J. Semicond., 2016, 37(1): 014009. doi: 10.1088/1674-4926/37/1/014009

[11]

Xiao Wei, Xiao Jinglin. Influence of Magnetic and Coulomb Fields on Properties of a Strong-CouplingPolaron in a Semiconductor Quantum Dot. J. Semicond., 2006, 27(12): 2118.

[12]

Wang Zewen, Zhang Long, Gu Zhi, Jie Wanqi. Etching Behavior of Microdefect in Diluted Magnetic Semiconductor H90.89 Mn0.11Te. J. Semicond., 2007, 28(S1): 561.

[13]

Shimin Feng, Suihua Zhou, Zhiyi Chen. A very low noise preamplifier for extremely low frequency magnetic antenna. J. Semicond., 2013, 34(7): 075003. doi: 10.1088/1674-4926/34/7/075003

[14]

Liu Ting, Zou Zeya, Wang Zhen, Zhao Hong, Zhao Wenbo, Luo Muchang, Zhou Xun, Yang Xiaobo, Liao Xiuying. Growth of p-GaN on High-Temperature AlN Templates. J. Semicond., 2008, 29(1): 128.

[15]

Yu Yifu, Yin Jiwen, Xiao Jinglin. Influence of Interaction Between Phonons and Magnetic Fieldon Properties of Bound Polaron in a Quantum Dot. J. Semicond., 2006, 27(S1): 49.

[16]

Zhang Wen, Xu Yuesheng, Wang Shengli. Magnetic Viscosity of Si Melt Under a Magnetic Field. J. Semicond., 2007, 28(1): 65.

[17]

D. Lalitha, A. John Peter. Effect of p-d exchange with an itinerant carrier in a GaMnAs quantum dot. J. Semicond., 2013, 34(7): 072001. doi: 10.1088/1674-4926/34/7/072001

[18]

Maisagalla Gopal, Atul Awadhiya, Nandakishor Yadav, S. K. Vishvakarma, Vaibhav Neema. Impact of varying carbon concentration in SiC S/D asymmetric dual-k spacer for high performance and reliable FinFET. J. Semicond., 2018, 39(10): 104001. doi: 10.1088/1674-4926/39/10/104001

[19]

Du Jian, Li Zhiwen, Zhang Peng. Effect of External Magnetic Field on the Spin-Dependent Transport and Shot Noise of a Ferromagnetic/Semiconductor/Ferromagnetic Heterojunction with Double δ Tunnel Barrier. J. Semicond., 2008, 29(6): 1147.

[20]

Xia Yanqiu, Wu Shuxiang, Liu Yajing, Yu Xiaolong, Li Shuwei. Characterization of Diluted Magnetic Semiconductor Mn0.1Ti0.9O2-δ Thin Film Grown by Molecular Beam Epitaxy. J. Semicond., 2007, 28(7): 1058.

Search

Advanced Search >>

GET CITATION

Q Cao, S S Yan, 合乐彩票[J]. J. Semicond., 2019, 40(8): 081501. doi: 10.1088/1674-4926/40/8/081501.

Export: BibTex EndNote

Article Metrics

Article views: 303 Times PDF downloads: 73 Times Cited by: 0 Times

History

Manuscript received: 11 June 2016 Manuscript revised: 02 July 2019 Online: Accepted Manuscript: 10 July 2019 Uncorrected proof: 06 August 2019 Published: 09 August 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤