J. Semicond. >  In Press

Review on the quantum emitters in two-dimensional materials

Shuliang Ren 1, 2, , Qinghai Tan 1, 2, and Jun Zhang 1, 2, 3, 4, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The solid state single photon source is fundamental key device for application of quantum communication, quantum computing, quantum information and quantum precious metrology. After years of searching, researchers have found the single photon emitters in zero-dimensional quantum dots (QDs), one-dimensional nanowires, three-dimensional wide bandgap materials, as well as two-dimensional (2D) materials developed recently. Here we will give a brief review on the single photon emitters in 2D van der Waals materials. We will firstly introduce the quantum emitters from various 2D materials and their characteristics. Then we will introduce the electrically driven quantum light in the transition metal dichalcogenides (TMDs)-based light emitting diode (LED). In addition, we will introduce how to tailor the quantum emitters by nanopillars and strain engineering, the entanglement between chiral phonons (CPs) and single photon in monolayer TMDs. Finally, we will give a perspective on the opportunities and challenges of 2D materials-based quantum light sources.

Key words: two-dimensional materialssingle photon sourcequantum entanglement

Abstract: The solid state single photon source is fundamental key device for application of quantum communication, quantum computing, quantum information and quantum precious metrology. After years of searching, researchers have found the single photon emitters in zero-dimensional quantum dots (QDs), one-dimensional nanowires, three-dimensional wide bandgap materials, as well as two-dimensional (2D) materials developed recently. Here we will give a brief review on the single photon emitters in 2D van der Waals materials. We will firstly introduce the quantum emitters from various 2D materials and their characteristics. Then we will introduce the electrically driven quantum light in the transition metal dichalcogenides (TMDs)-based light emitting diode (LED). In addition, we will introduce how to tailor the quantum emitters by nanopillars and strain engineering, the entanglement between chiral phonons (CPs) and single photon in monolayer TMDs. Finally, we will give a perspective on the opportunities and challenges of 2D materials-based quantum light sources.

Key words: two-dimensional materialssingle photon sourcequantum entanglement



References:

[1]

Hours J, Varoutsis S, Gallart M, et al. Single photon emission from individual GaAs quantum dots. Appl Phys Lett, 2003, 82(14), 2206

[2]

Stock E, Warming T, Ostapenko I, et al. Single-photon emission from InGaAs quantum dots grown on (111) GaAs. Appl Phys Lett, 2010, 96(9), 145

[3]

Dalacu D, Poole P J, Williams R L. Nanowire-based sources of non-classical light. Nanotechnology, 2019, 30(23), 232001

[4]

Ma X, Hartmann N F, Baldwin J K, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nate Nanotechnol, 2015, 10(8), 671

[5]

Arita M, Le Roux F, Holmes M J, et al. Ultraclean single photon emission from a GaN quantum dot. Nano Lett, 2017, 17(5), 2902

[6]

Aharonovich I, Neu E. Diamond nanophotonics. Adv Opt Mater, 2014, 2(10), 911

[7]

Elke N, Christian H, Michael H, et al. Low-temperature investigations of single silicon vacancy colour centres in diamond. New J Phys, 2013, 15(4), 043005

[8]

Aharonovich I, Zhou C, Stacey A, et al. Enhanced single-photon emission in the near infrared from a diamond color center. Phys Rev B, 2009, 79(23), 1377

[9]

Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2(8)

[10]

Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 2015, 10(6), 491

[11]

Chakraborty C, Goodfellow K M, Nick V A. Localized emission from defects in MoSe2 layers. Opt Mater Express, 2016, 6(6), 2081

[12]

Cong C, Shang J, Wang Y, Yu T. Optical properties of 2D semiconductor WS2. Adv Opt Mater, 2018, 6(1), 1700767

[13]

Hill H M, Rigosi A F, Roquelet C, et al. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett, 2015, 15(5), 2992

[14]

Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10(6), 503

[15]

Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 2015, 10(6), 507

[16]

Ye Y, Dou X, Ding K, et al. Single photon emission from deep-level defects in monolayer WSe2. Phys Rev B, 2017, 95(24)

[17]

Qiao J D, Mei F H, Ye Y. Single-photon emitters in van der Waals materials. Chin Opt Lett, 2019, 17(2), 020011

[18]

He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10(6), 497

[19]

Tonndorf P, Schwarz S, Kern J, et al. Single-photon emitters in GaSe. 2D Mater, 2017, 4(2)

[20]

Jungwirth N R, Calderon B, Ji Y, et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett, 2016, 16(10), 6052

[21]

Tran T T, Zachreson C, Berhane A M, et al. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys Rev Appl, 2016, 5(3), 034005

[22]

Sontheimer B, Braun M, Nikolay N, et al. Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy. Phys Rev B, 2017, 96(12), 121202

[23]

Shotan Z, Jayakumar H, Considine C R, et al. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics, 2016, 3(12), 2490

[24]

Schell A W, Tran T T, Takashima H, et al. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics, 2016, 1(9), 091302

[25]

Bourrellier R, Meuret S, Tararan A, et al. Bright UV single photon emission at point defects in h-BN. Nano Lett, 2016, 16(7), 4317

[26]

Kianinia M, Regan B, Tawfik S A, et al. Robust solid-state quantum system operating at 800 K. ACS Photonics, 2017, 4(4), 768

[27]

Exarhos A L, Hopper D A, Patel R N, et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun, 2019, 10(1), 222

[28]

Palacios-Berraquero C, Kara D M, Montblanch A R P, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun, 2017, 8, 15093

[29]

Branny A, Kumar S, Proux R, et al. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat Commun, 2017, 8, 15053

[30]

Xue Y, Wang H, Tan Q, et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes. ACS Nano, 2018, 12(7), 7127

[31]

Kennard J E, Hadden J P, Marseglia L, et al. On-chip manipulation of single photons from a diamond defect. Phys Rev Lett, 2013, 111(21), 213603

[32]

Tran T T, Wang D, Xu Z Q, et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett, 2017, 17(4), 2634

[33]

Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10(10), 631

[34]

Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photonics, 2014, 8(12), 899

[35]

Lv R, Robinson J A, Schaak R E, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Accounts Chem Res, 2015, 48(1), 56

[36]

Tran T T, Elbadawi C, Totonjian D, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 2016, 10(8), 7331

[37]

Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3(6), 404

[38]

Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699

[39]

Yuan Z, Kardynal B E, Stevenson R M, et al. Electrically driven single-photon source. Science, 2002, 295(5552), 102

[40]

Mizuochi N. Electrically driven single photon source at room temperature by using single NV center in diamond. 2013 Conference on Lasers and Electro-Optics, 2013

[41]

Schwarz S, Kozikov A, Withers F, et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater, 2016, 3(2), 025038

[42]

Palacios-Berraquero C, Barbone M, Kara D M, et al. Atomically thin quantum light-emitting diodes. Nat Commun, 2016, 7, 12978

[43]

Hapke-Wurst I, Zeitler U, Haug R J, et al. Mapping the g factor anisotropy of InAs self-assembled quantum dots. Physica E, 2002, 12(1–4), 802

[44]

Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 2017, 8(1), 705

[45]

Kern J, Niehues I, Tonndorf P, et al. Nanoscale positioning of single-photon emitters in atomically Thin WSe2. Adv Mater, 2016, 28(33), 7101

[46]

Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86(4), 1391

[47]

Burek M J, Cohen J D, Meenehan S M, et al. Diamond optomechanical crystals. Optica, 2016, 3(12), 1404

[48]

Kepesidis K V, Bennett S D, Portolan S, et al. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys Rev B, 2013, 88(6), 064105

[49]

Togan E, Chu Y, Trifonov A S, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466(7307), 730

[50]

Xu X, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 2014, 10(5), 343

[51]

Chen X, Lu X, Dubey S, et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat Phys, 2018, 15(3), 221

[52]

Zhu H Y, Yi J, Li M Y, et al. Observation of chiral phonons. Science, 2018, 359(6375), 579

[53]

Wang L, Xu X, Zhang L, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570(7759), 91

[54]

Tran K, Moody G, Wu F, et al. Evidence for moire excitons in van der Waals heterostructures. Nature, 2019, 567(7746), 71

[1]

Hours J, Varoutsis S, Gallart M, et al. Single photon emission from individual GaAs quantum dots. Appl Phys Lett, 2003, 82(14), 2206

[2]

Stock E, Warming T, Ostapenko I, et al. Single-photon emission from InGaAs quantum dots grown on (111) GaAs. Appl Phys Lett, 2010, 96(9), 145

[3]

Dalacu D, Poole P J, Williams R L. Nanowire-based sources of non-classical light. Nanotechnology, 2019, 30(23), 232001

[4]

Ma X, Hartmann N F, Baldwin J K, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nate Nanotechnol, 2015, 10(8), 671

[5]

Arita M, Le Roux F, Holmes M J, et al. Ultraclean single photon emission from a GaN quantum dot. Nano Lett, 2017, 17(5), 2902

[6]

Aharonovich I, Neu E. Diamond nanophotonics. Adv Opt Mater, 2014, 2(10), 911

[7]

Elke N, Christian H, Michael H, et al. Low-temperature investigations of single silicon vacancy colour centres in diamond. New J Phys, 2013, 15(4), 043005

[8]

Aharonovich I, Zhou C, Stacey A, et al. Enhanced single-photon emission in the near infrared from a diamond color center. Phys Rev B, 2009, 79(23), 1377

[9]

Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2(8)

[10]

Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 2015, 10(6), 491

[11]

Chakraborty C, Goodfellow K M, Nick V A. Localized emission from defects in MoSe2 layers. Opt Mater Express, 2016, 6(6), 2081

[12]

Cong C, Shang J, Wang Y, Yu T. Optical properties of 2D semiconductor WS2. Adv Opt Mater, 2018, 6(1), 1700767

[13]

Hill H M, Rigosi A F, Roquelet C, et al. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett, 2015, 15(5), 2992

[14]

Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10(6), 503

[15]

Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 2015, 10(6), 507

[16]

Ye Y, Dou X, Ding K, et al. Single photon emission from deep-level defects in monolayer WSe2. Phys Rev B, 2017, 95(24)

[17]

Qiao J D, Mei F H, Ye Y. Single-photon emitters in van der Waals materials. Chin Opt Lett, 2019, 17(2), 020011

[18]

He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10(6), 497

[19]

Tonndorf P, Schwarz S, Kern J, et al. Single-photon emitters in GaSe. 2D Mater, 2017, 4(2)

[20]

Jungwirth N R, Calderon B, Ji Y, et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett, 2016, 16(10), 6052

[21]

Tran T T, Zachreson C, Berhane A M, et al. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys Rev Appl, 2016, 5(3), 034005

[22]

Sontheimer B, Braun M, Nikolay N, et al. Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy. Phys Rev B, 2017, 96(12), 121202

[23]

Shotan Z, Jayakumar H, Considine C R, et al. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics, 2016, 3(12), 2490

[24]

Schell A W, Tran T T, Takashima H, et al. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics, 2016, 1(9), 091302

[25]

Bourrellier R, Meuret S, Tararan A, et al. Bright UV single photon emission at point defects in h-BN. Nano Lett, 2016, 16(7), 4317

[26]

Kianinia M, Regan B, Tawfik S A, et al. Robust solid-state quantum system operating at 800 K. ACS Photonics, 2017, 4(4), 768

[27]

Exarhos A L, Hopper D A, Patel R N, et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun, 2019, 10(1), 222

[28]

Palacios-Berraquero C, Kara D M, Montblanch A R P, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun, 2017, 8, 15093

[29]

Branny A, Kumar S, Proux R, et al. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat Commun, 2017, 8, 15053

[30]

Xue Y, Wang H, Tan Q, et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes. ACS Nano, 2018, 12(7), 7127

[31]

Kennard J E, Hadden J P, Marseglia L, et al. On-chip manipulation of single photons from a diamond defect. Phys Rev Lett, 2013, 111(21), 213603

[32]

Tran T T, Wang D, Xu Z Q, et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett, 2017, 17(4), 2634

[33]

Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10(10), 631

[34]

Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photonics, 2014, 8(12), 899

[35]

Lv R, Robinson J A, Schaak R E, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Accounts Chem Res, 2015, 48(1), 56

[36]

Tran T T, Elbadawi C, Totonjian D, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 2016, 10(8), 7331

[37]

Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3(6), 404

[38]

Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699

[39]

Yuan Z, Kardynal B E, Stevenson R M, et al. Electrically driven single-photon source. Science, 2002, 295(5552), 102

[40]

Mizuochi N. Electrically driven single photon source at room temperature by using single NV center in diamond. 2013 Conference on Lasers and Electro-Optics, 2013

[41]

Schwarz S, Kozikov A, Withers F, et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater, 2016, 3(2), 025038

[42]

Palacios-Berraquero C, Barbone M, Kara D M, et al. Atomically thin quantum light-emitting diodes. Nat Commun, 2016, 7, 12978

[43]

Hapke-Wurst I, Zeitler U, Haug R J, et al. Mapping the g factor anisotropy of InAs self-assembled quantum dots. Physica E, 2002, 12(1–4), 802

[44]

Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 2017, 8(1), 705

[45]

Kern J, Niehues I, Tonndorf P, et al. Nanoscale positioning of single-photon emitters in atomically Thin WSe2. Adv Mater, 2016, 28(33), 7101

[46]

Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86(4), 1391

[47]

Burek M J, Cohen J D, Meenehan S M, et al. Diamond optomechanical crystals. Optica, 2016, 3(12), 1404

[48]

Kepesidis K V, Bennett S D, Portolan S, et al. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys Rev B, 2013, 88(6), 064105

[49]

Togan E, Chu Y, Trifonov A S, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466(7307), 730

[50]

Xu X, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 2014, 10(5), 343

[51]

Chen X, Lu X, Dubey S, et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat Phys, 2018, 15(3), 221

[52]

Zhu H Y, Yi J, Li M Y, et al. Observation of chiral phonons. Science, 2018, 359(6375), 579

[53]

Wang L, Xu X, Zhang L, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570(7759), 91

[54]

Tran K, Moody G, Wu F, et al. Evidence for moire excitons in van der Waals heterostructures. Nature, 2019, 567(7746), 71

[1]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[2]

Qiang Li, Ji-Yang Zhou, Zheng-Hao Liu, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Stable single photon sources in the near C-band range above 400 K. J. Semicond., 2019, 40(7): 072902. doi: 10.1088/1674-4926/40/7/072902

[3]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[4]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[5]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[6]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1?xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[7]

Yan Wang, Le Huang, Zhongming Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001

[8]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[9]

Jun Zhang. Single photon-chiral phonon entanglement in monolayer WSe2. J. Semicond., 2019, 40(7): 070404. doi: 10.1088/1674-4926/40/7/070404

[10]

Jie Jiang, Zhenhua Ni. Defect engineering in two-dimensional materials. J. Semicond., 2019, 40(7): 070403. doi: 10.1088/1674-4926/40/7/070403

[11]

Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials. J. Semicond., 2019, 40(6): 061001. doi: 10.1088/1674-4926/40/6/061001

[12]

Lun Dai. Room-temperature stable two-dimensional ferroelectric materials. J. Semicond., 2019, 40(6): 060402. doi: 10.1088/1674-4926/40/6/060402

[13]

Yun Kang, Sheng Wang, Xianli Li. Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. J. Semicond., 2015, 36(3): 032003. doi: 10.1088/1674-4926/36/3/032003

[14]

Xu Wen. Quantum and Transport Mobilities of a Two-Dimensional Electron Gas in the Presence of the Rashba Spin-Orbit Interaction. J. Semicond., 2006, 27(2): 204.

[15]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[16]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[17]

Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, Boon S. Ooi. Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III-nitrides, III–oxides, and two-dimensional materials. J. Semicond., 2019, 40(0): 000000.

[18]

Chen Shihua. Properties of the two- and three-dimensional quantum dot qubit. J. Semicond., 2010, 31(5): 052001. doi: 10.1088/1674-4926/31/5/052001

[19]

Xin Cao, Michael Zopf, Fei Ding. Telecom wavelength single photon sources. J. Semicond., 2019, 40(7): 071901. doi: 10.1088/1674-4926/40/7/071901

[20]

Bahniman Ghosh, Naval Kishor. An ab initio study of strained two-dimensional MoSe2. J. Semicond., 2015, 36(4): 043001. doi: 10.1088/1674-4926/36/4/043001

Search

Advanced Search >>

GET CITATION

S L Ren, Q H Tan, J Zhang, Review on the quantum emitters in two-dimensional materials[J]. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903.

Export: BibTex EndNote

Article Metrics

Article views: 111 Times PDF downloads: 45 Times Cited by: 0 Times

History

Manuscript received: 30 April 2019 Manuscript revised: 12 June 2019 Online: Accepted Manuscript: 18 June 2019 Uncorrected proof: 27 June 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤