X W He, Y F Song, Y Yu, B Ma, Z S Chen, X J Shang, H Q Ni, B Q Sun, X M Dou, H Chen, H Y Hao, T T Qi, S S Huang, H Q Liu, X B Su, X L Su, Y J Shi, Z C Niu, 合乐彩票[J]. J. Semicond., 2019, 40(7): 071902. doi: 10.1088/1674-4926/40/7/071902.
Xiaowu He^{ 1, } , Yifeng Song^{ 2, } , Ying Yu^{ 3, } , Ben Ma^{ 1, } , Zesheng Chen^{ 1, } , Xiangjun Shang^{ 1, } , Haiqiao Ni^{ 1, } , Baoquan Sun^{ 1, } , Xiuming Dou^{ 1, } , Hao Chen^{ 1, } , Hongyue Hao^{ 1, } , Tongtong Qi^{ 1, } , Shushan Huang^{ 1, } , Hanqing Liu^{ 1, } , Xiangbin Su^{ 1, } , Xinliang Su^{ 4, } , Yujun Shi^{ 4, } and Zhichuan Niu^{ 1, 5, 6, , }
Abstract: A brief introduction of semiconductor self-assembled quantum dots (QDs) applied in single-photon sources is given. Single QDs in confined quantum optical microcavity systems are reviewed along with their optical properties and coupling characteristics. Subsequently, the recent progresses in In(Ga)As QDs systems are summarized including the preparation of quantum light sources, multiple methods for embedding single QDs into different microcavities and the scalability of single-photon emitting wavelength. Particularly, several In(Ga)As QD single-photon devices are surveyed including In(Ga)As QDs coupling with nanowires, InAs QDs coupling with distributed Bragg reflection microcavity and the In(Ga)As QDs coupling with micropillar microcavities. Furthermore, applications in the field of single QDs technology are illustrated, such as the entangled photon emission by spontaneous parametric down conversion, the single-photon quantum storage, the chip preparation of single-photon sources as well as the single-photon resonance-fluorescence measurements.
Key words: quantum optics, quantum dots, nanowires, light sources
Abstract: A brief introduction of semiconductor self-assembled quantum dots (QDs) applied in single-photon sources is given. Single QDs in confined quantum optical microcavity systems are reviewed along with their optical properties and coupling characteristics. Subsequently, the recent progresses in In(Ga)As QDs systems are summarized including the preparation of quantum light sources, multiple methods for embedding single QDs into different microcavities and the scalability of single-photon emitting wavelength. Particularly, several In(Ga)As QD single-photon devices are surveyed including In(Ga)As QDs coupling with nanowires, InAs QDs coupling with distributed Bragg reflection microcavity and the In(Ga)As QDs coupling with micropillar microcavities. Furthermore, applications in the field of single QDs technology are illustrated, such as the entangled photon emission by spontaneous parametric down conversion, the single-photon quantum storage, the chip preparation of single-photon sources as well as the single-photon resonance-fluorescence measurements.
Key words:
quantum optics, quantum dots, nanowires, light sources
References:
[1] |
Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser. Nature, 2013, 497(7449), 348 |
[2] |
Pelton M, Santori C, Vuckovic J, et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys Rev Lett, 2002, 89(23), 233602 |
[3] |
Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7014), 200 |
[4] |
Peter E, Senellart P, Martrou D, et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett, 2005, 95(6), 067401 |
[5] |
Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Phys Rev A, 1999, 59(3), 2418 |
[6] |
Gerard J M, Gayral B. InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. Physica E, 2001, 9(1), 131 |
[7] |
Hargart F, Roy-Choudhury K, John T, et al. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons. New J Phys, 2016, 18, 123031 |
[8] |
Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549(7670), 43 |
[9] |
Harrow A W, Montanaro A. Quantum computational supremacy. Nature, 2017, 549(7671), 203 |
[10] |
Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549(7670), 70 |
[11] |
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816), 46 |
[12] |
Divincenzo D P. Quantum computation. Science, 1995, 270(5234), 255 |
[13] |
Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67(6), 661 |
[14] |
Gisin N, Ribordy G G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74(1), 145 |
[15] |
Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518(7540), 516 |
[16] |
Gisin N, Thew R. Quantum communication. Nat Photonics, 2007, 1(3), 165 |
[17] |
Oxborrow M, Sinclair A G. Single-photon sources. Contemp Phys, 2005, 46(3), 173 |
[18] |
Muller A, Herzog T, Huttner B, et al. ''Plug and play'' systems for quantum cryptography. Appl Phys Lett, 1997, 70(7), 793 |
[19] |
Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography. Phys Rev Lett, 2000, 85(6), 1330 |
[20] |
Yao P J, Rao V, Hughes S. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photon Rev, 2010, 4(4), 499 |
[21] |
Shan G C, Yin Z Q, Shek C H, et al. Single photon sources with single semiconductor quantum dots. Front Phys, 2014, 9(2), 170 |
[22] |
Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407(6803), 491 |
[23] |
Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431(7012), 1075 |
[24] |
Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 2002, 89(6), 4 |
[25] |
Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons. Phys Rev Lett, 2000, 85(2), 290 |
[26] |
Liang B L, Wang Z M, Wang X Y, et a. Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy. ACS Nano, 2008, 2(11), 2219 |
[27] |
He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 2013, 8(3), 213 |
[28] |
Badolato A, Hennessy K, Atature M, et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 2005, 308(5725), 1158 |
[29] |
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10(10), 631 |
[30] |
Chen Y, Zhang J X, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387 |
[31] |
Yu Y, Shang X J, Li M F, et al. Single InAs quantum dot coupled to different " environments” in one wafer for quantum photonics. Appl Phys Lett, 2013, 102(20), 201103 |
[32] |
Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light. Nature, 1956, 177(4497), 27 |
[33] |
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290(5500), 2282 |
[34] |
Mar J D, Xu X L, Baumberg J J, et al. Bias-controlled single-electron charging of a self-assembled quantum dot in a two-dimensional-electron-gas-based n-i-Schottky diode. Phys Rev B, 2011, 83(7), 075306 |
[35] |
Warburton R J, Schaflein C, Haft D, et al. Optical emission from a charge-tunable quantum ring. Nature, 2000, 405(6789), 926 |
[36] |
Benson O, Santori C, Pelton M, et al. Regulated and entangled photons from a single quantum dot. Phys Rev Lett, 2000, 84(11), 2513 |
[37] |
Mano T, Watanabe K, Tsukamoto S, et al. Fabrication of InGaAs quantum dots on GaAs(001) by droplet epitaxy. J Cryst Growth, 2000, 209(2/3), 504 |
[38] |
Ding X, He Y, Duan Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 2016, 116(2), 020401 |
[39] |
Yu Y, Dou X M, Wei B, et al. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics. Adv Mater, 2014, 26(17), 2710 |
[40] |
Xie X M, Xu Q, Shen B Z, et al. InGaAsP/InP micropillar cavities for 1.55 μm quantum-dot single photon sources. 6th Conference on Advances in Optoelectronics and Micro/Nano-Optics, Bristol: Iop Publishing Ltd, Bristol, 2017, 844 |
[41] |
Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96(1), 011107 |
[42] |
Xu T, Zhu N, Xu M Y C, et al. A pillar-array based two-dimensional photonic crystal microcavity. Appl Phys Lett, 2009, 94(24), 241110 |
[43] |
Vahala K J. Optical microcavities. Nature, 2003, 424(6950), 839 |
[44] |
Javadi A, Mahmoodian S, Sollner I, et al. Numerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides. J Opt Soc Am B, 2018, 35(3), 514 |
[45] |
Ali H, Zhang Y Y, Tang J, et al. High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire. Small, 2018, 14(17), 9 |
[46] |
Ward M B, Farrow T, See P, et al. Electrically driven telecommunication wavelength single-photon source. Appl Phys Lett, 2007, 90(6), 063512 |
[47] |
Salter C L, Stevenson R M, Farrer I, et al. An entangled-light-emitting diode. Nature, 2010, 465(7298), 594 |
[48] |
Dou X M, Chang X Y, Sun B Q, et al. Single-photon-emitting diode at liquid nitrogen temperature. Appl Phys Lett, 2008, 93(10), 101107 |
[49] |
Hargart F, Kessler C A, Schwarzback T, et al. Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl Phys Lett, 2013, 102(1), 011126 |
[50] |
Gerard J M, Solid-state cavity-quantum electrodynamics with self-assembled quantum dots. In: Single Quantum Dots: Fundamentals, Applications and New Concepts. Berlin: Springer-Verlag, 2003, 90, 269 |
[51] |
P Michler. Single quantum dots: Fundamentals, applications and new concepts. Berlin Heidelberg: Springer Publishing Company, Incorporated, 2003 |
[52] |
Muller M, Bounouar S, Jons K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 2014, 8(3), 224 |
[53] |
Wang H, Duan Z C, Li Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 2016, 116(21), 213601 |
[54] |
He Y, He Y M, Wei Y J, et al. Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots. Phys Rev Lett, 2013, 111(23), 237403 |
[55] |
Zhang J X, Zallo E, Hofer B, et al. Electric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots. Nano Lett, 2017, 17(1), 501 |
[56] |
Chen Z S, Ma B, Shang X J, et al. Bright single-photon source at 1.3 μm based on InAs bilayer quantum dot in micropillar. Nanoscale Res Lett, 2017, 12(1), 378 |
[57] |
Ma B, Chen Z S, Wei S H, et al. Single photon extraction from self-assembled quantum dots via stable fiber array coupling. Appl Phys Lett, 2017, 110(14), 142104 |
[58] |
Zha G W, Shang X J, Su D, et al. Self-assembly of single "square" quantum rings in gold-free GaAs nanowires. Nanoscale, 2014, 6(6), 3190 |
[59] |
Yu Y, Li M F, He J F, et al. Single InAs quantum dot grown at the junction of branched gold-free GaAs nanowire. Nano Lett, 2013, 13(4), 1399 |
[60] |
Zha G W, Shang X J, Ni H Q, et al. In situ probing and integration of single self-assembled quantum dots-in-nanowires for quantum photonics. Nanotechnology, 2015, 26(38), 385706 |
[61] |
Tang J S, Zhou Z Q, Wang Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat Commun, 2015, 6, 8652 |
[62] |
Konthasinghe K, Peiris M, Yu Y, et al. Field-field and photon-photon correlations of light scattered by two remote two-level InAs quantum dots on the same substrate. Phys Rev Lett, 2012, 109(26), 267402 |
[63] |
Konthasinghe K, Walker J, iris, et al. Coherent versus incoherent light scattering from a quantum dot. Phys Rev B, 2012, 85(23), 235315 |
[64] |
Peiris M, Konthasinghe K, Yu Y, et al. Bichromatic resonant light scattering from a quantum dot. Phys Rev B, 2014, 89(15), 155305 |
[65] |
Chen G, Zou Y, Xu X Y, et al. Experimental test of the state estimation-reversal tradeoff relation in general quantum measurements. Phys Rev X, 2014, 4(5), 021043 |
[66] |
Chen G, Zou Y, Zhang W H, et al. Experimental demonstration of a hybrid-quantum-emitter producing individual entangled photon Pairs in the telecom band. Sci Rep, 2016, 6, 26680 |
[67] |
Buckley S, Rivoire K, Vuckovic J. Engineered quantum dot single-photon sources. Rep Prog Phys, 2012, 75(12), 126503 |
[68] |
Franchi S, Trevisi G, Seravalli L, et al. Quantum dot nanostructures and molecular beam epitaxy. Prog Cryst Growth Charact Mater, 2003, 47(2/3), 166 |
[69] |
Purcell E M. Spontaneous emission probabilities at radio frequencies. Phys Rev, 1946, 69, 681 |
[70] |
Bozhevolnyi S I, Khurgin J B. Fundamental limitations in spontaneous emission rate of single-photon sources. Optica, 2016, 3(12), 1418 |
[71] |
Zhao Y P, Li C C, Chen M M, et al. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition. Phys Lett A, 2016, 380(47), 3993 |
[72] |
Shang X J, Xu J X, Ma B, et al. Proper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots. Chin Phys B, 2016, 25(10), 107805 |
[73] |
Zhou P Y, Dou X M, Wu X F, et al. Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes. Sci Rep, 2014, 4, 3633 |
[74] |
Michler P, Kiraz A, Zhang L D, et al. Laser emission from quantum dots in microdisk structures. Appl Phys Lett, 2000, 77(2), 184 |
[75] |
Benson O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 2011, 480(7376), 193 |
[76] |
Chen Z S, Ma B, Shang X J, et al. Telecommunication wavelength-band single-photon emission from single large InAs quantum dots nucleated on low-density seed quantum dots. Nanoscale Res Lett, 2016, 11(1), 382 |
[1] |
Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser. Nature, 2013, 497(7449), 348 |
[2] |
Pelton M, Santori C, Vuckovic J, et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys Rev Lett, 2002, 89(23), 233602 |
[3] |
Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7014), 200 |
[4] |
Peter E, Senellart P, Martrou D, et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett, 2005, 95(6), 067401 |
[5] |
Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Phys Rev A, 1999, 59(3), 2418 |
[6] |
Gerard J M, Gayral B. InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. Physica E, 2001, 9(1), 131 |
[7] |
Hargart F, Roy-Choudhury K, John T, et al. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons. New J Phys, 2016, 18, 123031 |
[8] |
Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549(7670), 43 |
[9] |
Harrow A W, Montanaro A. Quantum computational supremacy. Nature, 2017, 549(7671), 203 |
[10] |
Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549(7670), 70 |
[11] |
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816), 46 |
[12] |
Divincenzo D P. Quantum computation. Science, 1995, 270(5234), 255 |
[13] |
Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67(6), 661 |
[14] |
Gisin N, Ribordy G G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74(1), 145 |
[15] |
Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518(7540), 516 |
[16] |
Gisin N, Thew R. Quantum communication. Nat Photonics, 2007, 1(3), 165 |
[17] |
Oxborrow M, Sinclair A G. Single-photon sources. Contemp Phys, 2005, 46(3), 173 |
[18] |
Muller A, Herzog T, Huttner B, et al. ''Plug and play'' systems for quantum cryptography. Appl Phys Lett, 1997, 70(7), 793 |
[19] |
Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography. Phys Rev Lett, 2000, 85(6), 1330 |
[20] |
Yao P J, Rao V, Hughes S. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photon Rev, 2010, 4(4), 499 |
[21] |
Shan G C, Yin Z Q, Shek C H, et al. Single photon sources with single semiconductor quantum dots. Front Phys, 2014, 9(2), 170 |
[22] |
Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407(6803), 491 |
[23] |
Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431(7012), 1075 |
[24] |
Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 2002, 89(6), 4 |
[25] |
Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons. Phys Rev Lett, 2000, 85(2), 290 |
[26] |
Liang B L, Wang Z M, Wang X Y, et a. Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy. ACS Nano, 2008, 2(11), 2219 |
[27] |
He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 2013, 8(3), 213 |
[28] |
Badolato A, Hennessy K, Atature M, et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 2005, 308(5725), 1158 |
[29] |
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10(10), 631 |
[30] |
Chen Y, Zhang J X, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387 |
[31] |
Yu Y, Shang X J, Li M F, et al. Single InAs quantum dot coupled to different " environments” in one wafer for quantum photonics. Appl Phys Lett, 2013, 102(20), 201103 |
[32] |
Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light. Nature, 1956, 177(4497), 27 |
[33] |
Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290(5500), 2282 |
[34] |
Mar J D, Xu X L, Baumberg J J, et al. Bias-controlled single-electron charging of a self-assembled quantum dot in a two-dimensional-electron-gas-based n-i-Schottky diode. Phys Rev B, 2011, 83(7), 075306 |
[35] |
Warburton R J, Schaflein C, Haft D, et al. Optical emission from a charge-tunable quantum ring. Nature, 2000, 405(6789), 926 |
[36] |
Benson O, Santori C, Pelton M, et al. Regulated and entangled photons from a single quantum dot. Phys Rev Lett, 2000, 84(11), 2513 |
[37] |
Mano T, Watanabe K, Tsukamoto S, et al. Fabrication of InGaAs quantum dots on GaAs(001) by droplet epitaxy. J Cryst Growth, 2000, 209(2/3), 504 |
[38] |
Ding X, He Y, Duan Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 2016, 116(2), 020401 |
[39] |
Yu Y, Dou X M, Wei B, et al. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics. Adv Mater, 2014, 26(17), 2710 |
[40] |
Xie X M, Xu Q, Shen B Z, et al. InGaAsP/InP micropillar cavities for 1.55 μm quantum-dot single photon sources. 6th Conference on Advances in Optoelectronics and Micro/Nano-Optics, Bristol: Iop Publishing Ltd, Bristol, 2017, 844 |
[41] |
Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96(1), 011107 |
[42] |
Xu T, Zhu N, Xu M Y C, et al. A pillar-array based two-dimensional photonic crystal microcavity. Appl Phys Lett, 2009, 94(24), 241110 |
[43] |
Vahala K J. Optical microcavities. Nature, 2003, 424(6950), 839 |
[44] |
Javadi A, Mahmoodian S, Sollner I, et al. Numerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides. J Opt Soc Am B, 2018, 35(3), 514 |
[45] |
Ali H, Zhang Y Y, Tang J, et al. High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire. Small, 2018, 14(17), 9 |
[46] |
Ward M B, Farrow T, See P, et al. Electrically driven telecommunication wavelength single-photon source. Appl Phys Lett, 2007, 90(6), 063512 |
[47] |
Salter C L, Stevenson R M, Farrer I, et al. An entangled-light-emitting diode. Nature, 2010, 465(7298), 594 |
[48] |
Dou X M, Chang X Y, Sun B Q, et al. Single-photon-emitting diode at liquid nitrogen temperature. Appl Phys Lett, 2008, 93(10), 101107 |
[49] |
Hargart F, Kessler C A, Schwarzback T, et al. Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl Phys Lett, 2013, 102(1), 011126 |
[50] |
Gerard J M, Solid-state cavity-quantum electrodynamics with self-assembled quantum dots. In: Single Quantum Dots: Fundamentals, Applications and New Concepts. Berlin: Springer-Verlag, 2003, 90, 269 |
[51] |
P Michler. Single quantum dots: Fundamentals, applications and new concepts. Berlin Heidelberg: Springer Publishing Company, Incorporated, 2003 |
[52] |
Muller M, Bounouar S, Jons K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 2014, 8(3), 224 |
[53] |
Wang H, Duan Z C, Li Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 2016, 116(21), 213601 |
[54] |
He Y, He Y M, Wei Y J, et al. Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots. Phys Rev Lett, 2013, 111(23), 237403 |
[55] |
Zhang J X, Zallo E, Hofer B, et al. Electric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots. Nano Lett, 2017, 17(1), 501 |
[56] |
Chen Z S, Ma B, Shang X J, et al. Bright single-photon source at 1.3 μm based on InAs bilayer quantum dot in micropillar. Nanoscale Res Lett, 2017, 12(1), 378 |
[57] |
Ma B, Chen Z S, Wei S H, et al. Single photon extraction from self-assembled quantum dots via stable fiber array coupling. Appl Phys Lett, 2017, 110(14), 142104 |
[58] |
Zha G W, Shang X J, Su D, et al. Self-assembly of single "square" quantum rings in gold-free GaAs nanowires. Nanoscale, 2014, 6(6), 3190 |
[59] |
Yu Y, Li M F, He J F, et al. Single InAs quantum dot grown at the junction of branched gold-free GaAs nanowire. Nano Lett, 2013, 13(4), 1399 |
[60] |
Zha G W, Shang X J, Ni H Q, et al. In situ probing and integration of single self-assembled quantum dots-in-nanowires for quantum photonics. Nanotechnology, 2015, 26(38), 385706 |
[61] |
Tang J S, Zhou Z Q, Wang Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat Commun, 2015, 6, 8652 |
[62] |
Konthasinghe K, Peiris M, Yu Y, et al. Field-field and photon-photon correlations of light scattered by two remote two-level InAs quantum dots on the same substrate. Phys Rev Lett, 2012, 109(26), 267402 |
[63] |
Konthasinghe K, Walker J, iris, et al. Coherent versus incoherent light scattering from a quantum dot. Phys Rev B, 2012, 85(23), 235315 |
[64] |
Peiris M, Konthasinghe K, Yu Y, et al. Bichromatic resonant light scattering from a quantum dot. Phys Rev B, 2014, 89(15), 155305 |
[65] |
Chen G, Zou Y, Xu X Y, et al. Experimental test of the state estimation-reversal tradeoff relation in general quantum measurements. Phys Rev X, 2014, 4(5), 021043 |
[66] |
Chen G, Zou Y, Zhang W H, et al. Experimental demonstration of a hybrid-quantum-emitter producing individual entangled photon Pairs in the telecom band. Sci Rep, 2016, 6, 26680 |
[67] |
Buckley S, Rivoire K, Vuckovic J. Engineered quantum dot single-photon sources. Rep Prog Phys, 2012, 75(12), 126503 |
[68] |
Franchi S, Trevisi G, Seravalli L, et al. Quantum dot nanostructures and molecular beam epitaxy. Prog Cryst Growth Charact Mater, 2003, 47(2/3), 166 |
[69] |
Purcell E M. Spontaneous emission probabilities at radio frequencies. Phys Rev, 1946, 69, 681 |
[70] |
Bozhevolnyi S I, Khurgin J B. Fundamental limitations in spontaneous emission rate of single-photon sources. Optica, 2016, 3(12), 1418 |
[71] |
Zhao Y P, Li C C, Chen M M, et al. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition. Phys Lett A, 2016, 380(47), 3993 |
[72] |
Shang X J, Xu J X, Ma B, et al. Proper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots. Chin Phys B, 2016, 25(10), 107805 |
[73] |
Zhou P Y, Dou X M, Wu X F, et al. Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes. Sci Rep, 2014, 4, 3633 |
[74] |
Michler P, Kiraz A, Zhang L D, et al. Laser emission from quantum dots in microdisk structures. Appl Phys Lett, 2000, 77(2), 184 |
[75] |
Benson O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 2011, 480(7376), 193 |
[76] |
Chen Z S, Ma B, Shang X J, et al. Telecommunication wavelength-band single-photon emission from single large InAs quantum dots nucleated on low-density seed quantum dots. Nanoscale Res Lett, 2016, 11(1), 382 |
[1] |
Shuangyi Zhao, Xiangkai Liu, Xiaodong Pi, Deren Yang. Light-emitting diodes based on colloidal silicon quantum dots. J. Semicond., 2018, 39(6): 061008. doi: 10.1088/1674-4926/39/6/061008 |
[2] |
Xinzhe Min, Pengchen Zhu, Shuai Gu, Jia Zhu. Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond., 2017, 38(1): 011004. doi: 10.1088/1674-4926/38/1/011004 |
[3] |
Zhang Guanjie, Xu Bo, Chen Yonghai, Yao Jianghong, Lin Yaowang, Shu Yongchun, Pi Biao, Xing Xiaodong, Liu Rubin, Shu Qiang, Wang Zhanguo, Xu Jingjun. Raman Scattering of InAs Quantum Dots with Different Deposition Thicknesses. J. Semicond., 2006, 27(6): 1012. |
[4] |
E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, M. Mikolasek. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond., 2014, 35(5): 054001. doi: 10.1088/1674-4926/35/5/054001 |
[5] |
Liang Zhimei, Wu Ju, Jin Peng, Lü Xueqin, Wang Zhanguo. The Origin of Multi-Peak Structures Observed in Photoluminescence Spectra of InAs/GaAs Quantum Dots. J. Semicond., 2008, 29(11): 2121. |
[6] |
K. Jaya Bala, A. John Peter. Differential optical gain in a GaInN/AlGaN quantum dot. J. Semicond., 2017, 38(6): 062001. doi: 10.1088/1674-4926/38/6/062001 |
[7] |
Cuilan Zhao, Chunyu Cai, Jinglin Xiao. Influence of an anisotropic parabolic potential on the quantum dot qubit. J. Semicond., 2013, 34(11): 112002. doi: 10.1088/1674-4926/34/11/112002 |
[8] |
Wang Yanzhen, Wu Nanjian. Simulation of Imperfection on Image-Charge Quantum Cellular Automaton Using Image Charge Effect. J. Semicond., 2005, 26(S1): 261. |
[9] |
Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901 |
[10] |
Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 000000. |
[11] |
Abou El-Maaty M. Aly, A. Nasr. The effect of multi-intermediate bands on the behavior of an InAs_{1-x}N_{x}/GaAs_{1-y}Sb_{y} quantum dot solar cell. J. Semicond., 2015, 36(4): 042001. doi: 10.1088/1674-4926/36/4/042001 |
[12] |
Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 000000. |
[13] |
Liu Ning, Jin Peng, Wu Ju, Wang Zhanguo. 1.3μm Photoluminescence from Multi-Stacked InAs/GaAs Quantum Dot Structure. J. Semicond., 2007, 28(S1): 215. |
[14] |
Liang Song, Zhu Hongliang, Pan Jiaoqing, Wang Wei. . J. Semicond., 2005, 26(11): 2074. |
[15] |
Kai Qiu, Yuhua Zuo, Tianwei Zhou, Zhi Liu, Jun Zheng, Chuanbo Li, Buwen Cheng. Enhanced light trapping in periodically truncated cone silicon nanowire structure. J. Semicond., 2015, 36(10): 104005. doi: 10.1088/1674-4926/36/10/104005 |
[16] |
Xie Zili, Zhang Rong, Gao Chao, Liu Bin, Li Liang, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Han Ping, Jiang Ruolian, Shi Yi, Zheng Youdou. Fabrication and Characteristics of In2O3 Nanowires. J. Semicond., 2006, 27(3): 536. |
[17] |
Chang Peng, Liu Su, Chen Rongbo, Tang Ying, Han Genliang. Low Temperature Synthesis and Optical Properties of ZnO Nanowires. J. Semicond., 2007, 28(10): 1503. |
[18] |
Li Yuguo, Yang Aichun, Zhuo Boshi, Peng Ruiqin, Zheng Xuelei. Growth of SiO_{2} nanowires on different substrates using Au as a catalyst. J. Semicond., 2011, 32(2): 023002. doi: 10.1088/1674-4926/32/2/023002 |
[19] |
B. Hamawandi, M. Noroozi, G. Jayakumar, A. Ergül, K. Zahmatkesh, M. S. Toprak, H. H. Radamson. Electrical properties of sub-100 nm SiGe nanowires. J. Semicond., 2016, 37(10): 102001. doi: 10.1088/1674-4926/37/10/102001 |
[20] |
Zhitao Han, Sisi Li, Junjun Li, Jinkui Chu, Yong Chen. Facile synthesis of ZnO nanowires on FTO glass for dye-sensitized solar cells. J. Semicond., 2013, 34(7): 074002. doi: 10.1088/1674-4926/34/7/074002 |
X W He, Y F Song, Y Yu, B Ma, Z S Chen, X J Shang, H Q Ni, B Q Sun, X M Dou, H Chen, H Y Hao, T T Qi, S S Huang, H Q Liu, X B Su, X L Su, Y J Shi, Z C Niu, 合乐彩票[J]. J. Semicond., 2019, 40(7): 071902. doi: 10.1088/1674-4926/40/7/071902.
Article views: 385 Times PDF downloads: 63 Times Cited by: 0 Times
Manuscript received: 01 June 2019 Manuscript revised: 13 June 2019 Online: Accepted Manuscript: 21 June 2019 Uncorrected proof: 25 June 2019 Published: 05 July 2019
Journal of Semiconductors © 2017 All Rights Reserved