[1] 
Schneider C, RahimiIman A, Kim N Y, et al. An electrically pumped polariton laser. Nature, 2013, 497(7449), 348

[2] 
Pelton M, Santori C, Vuckovic J, et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys Rev Lett, 2002, 89(23), 233602

[3] 
Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7014), 200

[4] 
Peter E, Senellart P, Martrou D, et al. Excitonphoton strongcoupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett, 2005, 95(6), 067401

[5] 
Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Phys Rev A, 1999, 59(3), 2418

[6] 
Gerard J M, Gayral B. InAs quantum dots: artificial atoms for solidstate cavityquantum electrodynamics. Physica E, 2001, 9(1), 131

[7] 
Hargart F, RoyChoudhury K, John T, et al. Probing different regimes of strong field lightmatter interaction with semiconductor quantum dots and few cavity photons. New J Phys, 2016, 18, 123031

[8] 
Liao S K, Cai W Q, Liu W Y, et al. Satellitetoground quantum key distribution. Nature, 2017, 549(7670), 43

[9] 
Harrow A W, Montanaro A. Quantum computational supremacy. Nature, 2017, 549(7671), 203

[10] 
Ren J G, Xu P, Yong H L, et al. Groundtosatellite quantum teleportation. Nature, 2017, 549(7670), 70

[11] 
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816), 46

[12] 
Divincenzo D P. Quantum computation. Science, 1995, 270(5234), 255

[13] 
Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67(6), 661

[14] 
Gisin N, Ribordy G G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74(1), 145

[15] 
Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518(7540), 516

[16] 
Gisin N, Thew R. Quantum communication. Nat Photonics, 2007, 1(3), 165

[17] 
Oxborrow M, Sinclair A G. Singlephoton sources. Contemp Phys, 2005, 46(3), 173

[18] 
Muller A, Herzog T, Huttner B, et al. ''Plug and play'' systems for quantum cryptography. Appl Phys Lett, 1997, 70(7), 793

[19] 
Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography. Phys Rev Lett, 2000, 85(6), 1330

[20] 
Yao P J, Rao V, Hughes S. Onchip single photon sources using planar photonic crystals and single quantum dots. Laser Photon Rev, 2010, 4(4), 499

[21] 
Shan G C, Yin Z Q, Shek C H, et al. Single photon sources with single semiconductor quantum dots. Front Phys, 2014, 9(2), 170

[22] 
Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407(6803), 491

[23] 
Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an iontrap cavity system. Nature, 2004, 431(7012), 1075

[24] 
Kuhn A, Hennrich M, Rempe G. Deterministic singlephoton source for distributed quantum networking. Phys Rev Lett, 2002, 89(6), 4

[25] 
Kurtsiefer C, Mayer S, Zarda P, et al. Stable solidstate source of single photons. Phys Rev Lett, 2000, 85(2), 290

[26] 
Liang B L, Wang Z M, Wang X Y, et a. Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy. ACS Nano, 2008, 2(11), 2219

[27] 
He Y M, He Y, Wei Y J, et al. Ondemand semiconductor singlephoton source with nearunity indistinguishability. Nat Nanotechnol, 2013, 8(3), 213

[28] 
Badolato A, Hennessy K, Atature M, et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 2005, 308(5725), 1158

[29] 
Aharonovich I, Englund D, Toth M. Solidstate singlephoton emitters. Nat Photonics, 2016, 10(10), 631

[30] 
Chen Y, Zhang J X, Zopf M, et al. Wavelengthtunable entangled photons from siliconintegrated III–V quantum dots. Nat Commun, 2016, 7, 10387

[31] 
Yu Y, Shang X J, Li M F, et al. Single InAs quantum dot coupled to different " environments” in one wafer for quantum photonics. Appl Phys Lett, 2013, 102(20), 201103

[32] 
Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light. Nature, 1956, 177(4497), 27

[33] 
Michler P, Kiraz A, Becher C, et al. A quantum dot singlephoton turnstile device. Science, 2000, 290(5500), 2282

[34] 
Mar J D, Xu X L, Baumberg J J, et al. Biascontrolled singleelectron charging of a selfassembled quantum dot in a twodimensionalelectrongasbased niSchottky diode. Phys Rev B, 2011, 83(7), 075306

[35] 
Warburton R J, Schaflein C, Haft D, et al. Optical emission from a chargetunable quantum ring. Nature, 2000, 405(6789), 926

[36] 
Benson O, Santori C, Pelton M, et al. Regulated and entangled photons from a single quantum dot. Phys Rev Lett, 2000, 84(11), 2513

[37] 
Mano T, Watanabe K, Tsukamoto S, et al. Fabrication of InGaAs quantum dots on GaAs(001) by droplet epitaxy. J Cryst Growth, 2000, 209(2/3), 504

[38] 
Ding X, He Y, Duan Z C, et al. Ondemand single photons with high extraction efficiency and nearunity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 2016, 116(2), 020401

[39] 
Yu Y, Dou X M, Wei B, et al. Selfassembled quantum dot structures in a hexagonal nanowire for quantum photonics. Adv Mater, 2014, 26(17), 2710

[40] 
Xie X M, Xu Q, Shen B Z, et al. InGaAsP/InP micropillar cavities for 1.55 μm quantumdot single photon sources. 6th Conference on Advances in Optoelectronics and Micro/NanoOptics, Bristol: Iop Publishing Ltd, Bristol, 2017, 844

[41] 
Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dotmicropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96(1), 011107

[42] 
Xu T, Zhu N, Xu M Y C, et al. A pillararray based twodimensional photonic crystal microcavity. Appl Phys Lett, 2009, 94(24), 241110

[43] 
Vahala K J. Optical microcavities. Nature, 2003, 424(6950), 839

[44] 
Javadi A, Mahmoodian S, Sollner I, et al. Numerical modeling of the coupling efficiency of single quantum emitters in photoniccrystal waveguides. J Opt Soc Am B, 2018, 35(3), 514

[45] 
Ali H, Zhang Y Y, Tang J, et al. Highresponsivity photodetection by a selfcatalyzed phasepure pGaAs nanowire. Small, 2018, 14(17), 9

[46] 
Ward M B, Farrow T, See P, et al. Electrically driven telecommunication wavelength singlephoton source. Appl Phys Lett, 2007, 90(6), 063512

[47] 
Salter C L, Stevenson R M, Farrer I, et al. An entangledlightemitting diode. Nature, 2010, 465(7298), 594

[48] 
Dou X M, Chang X Y, Sun B Q, et al. Singlephotonemitting diode at liquid nitrogen temperature. Appl Phys Lett, 2008, 93(10), 101107

[49] 
Hargart F, Kessler C A, Schwarzback T, et al. Electrically driven quantum dot singlephoton source at 2 GHz excitation repetition rate with ultralow emission time jitter. Appl Phys Lett, 2013, 102(1), 011126

[50] 
Gerard J M, Solidstate cavityquantum electrodynamics with selfassembled quantum dots. In: Single Quantum Dots: Fundamentals, Applications and New Concepts. Berlin: SpringerVerlag, 2003, 90, 269

[51] 
P Michler. Single quantum dots: Fundamentals, applications and new concepts. Berlin Heidelberg: Springer Publishing Company, Incorporated, 2003

[52] 
Muller M, Bounouar S, Jons K D, et al. Ondemand generation of indistinguishable polarizationentangled photon pairs. Nat Photonics, 2014, 8(3), 224

[53] 
Wang H, Duan Z C, Li Y H, et al. Neartransformlimited single photons from an efficient solidstate quantum emitter. Phys Rev Lett, 2016, 116(21), 213601

[54] 
He Y, He Y M, Wei Y J, et al. Indistinguishable tunable single photons emitted by spinflip raman transitions in InGaAs quantum dots. Phys Rev Lett, 2013, 111(23), 237403

[55] 
Zhang J X, Zallo E, Hofer B, et al. Electricfieldinduced energy tuning of ondemand entangledphoton emission from selfassembled quantum dots. Nano Lett, 2017, 17(1), 501

[56] 
Chen Z S, Ma B, Shang X J, et al. Bright singlephoton source at 1.3 μm based on InAs bilayer quantum dot in micropillar. Nanoscale Res Lett, 2017, 12(1), 378

[57] 
Ma B, Chen Z S, Wei S H, et al. Single photon extraction from selfassembled quantum dots via stable fiber array coupling. Appl Phys Lett, 2017, 110(14), 142104

[58] 
Zha G W, Shang X J, Su D, et al. Selfassembly of single "square" quantum rings in goldfree GaAs nanowires. Nanoscale, 2014, 6(6), 3190

[59] 
Yu Y, Li M F, He J F, et al. Single InAs quantum dot grown at the junction of branched goldfree GaAs nanowire. Nano Lett, 2013, 13(4), 1399

[60] 
Zha G W, Shang X J, Ni H Q, et al. In situ probing and integration of single selfassembled quantum dotsinnanowires for quantum photonics. Nanotechnology, 2015, 26(38), 385706

[61] 
Tang J S, Zhou Z Q, Wang Y T, et al. Storage of multiple singlephoton pulses emitted from a quantum dot in a solidstate quantum memory. Nat Commun, 2015, 6, 8652

[62] 
Konthasinghe K, Peiris M, Yu Y, et al. Fieldfield and photonphoton correlations of light scattered by two remote twolevel InAs quantum dots on the same substrate. Phys Rev Lett, 2012, 109(26), 267402

[63] 
Konthasinghe K, Walker J, iris, et al. Coherent versus incoherent light scattering from a quantum dot. Phys Rev B, 2012, 85(23), 235315

[64] 
Peiris M, Konthasinghe K, Yu Y, et al. Bichromatic resonant light scattering from a quantum dot. Phys Rev B, 2014, 89(15), 155305

[65] 
Chen G, Zou Y, Xu X Y, et al. Experimental test of the state estimationreversal tradeoff relation in general quantum measurements. Phys Rev X, 2014, 4(5), 021043

[66] 
Chen G, Zou Y, Zhang W H, et al. Experimental demonstration of a hybridquantumemitter producing individual entangled photon Pairs in the telecom band. Sci Rep, 2016, 6, 26680

[67] 
Buckley S, Rivoire K, Vuckovic J. Engineered quantum dot singlephoton sources. Rep Prog Phys, 2012, 75(12), 126503

[68] 
Franchi S, Trevisi G, Seravalli L, et al. Quantum dot nanostructures and molecular beam epitaxy. Prog Cryst Growth Charact Mater, 2003, 47(2/3), 166

[69] 
Purcell E M. Spontaneous emission probabilities at radio frequencies. Phys Rev, 1946, 69, 681

[70] 
Bozhevolnyi S I, Khurgin J B. Fundamental limitations in spontaneous emission rate of singlephoton sources. Optica, 2016, 3(12), 1418

[71] 
Zhao Y P, Li C C, Chen M M, et al. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition. Phys Lett A, 2016, 380(47), 3993

[72] 
Shang X J, Xu J X, Ma B, et al. Proper In deposition amount for ondemand epitaxy of InAs/GaAs single quantum dots. Chin Phys B, 2016, 25(10), 107805

[73] 
Zhou P Y, Dou X M, Wu X F, et al. Singlephoton property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes. Sci Rep, 2014, 4, 3633

[74] 
Michler P, Kiraz A, Zhang L D, et al. Laser emission from quantum dots in microdisk structures. Appl Phys Lett, 2000, 77(2), 184

[75] 
Benson O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 2011, 480(7376), 193

[76] 
Chen Z S, Ma B, Shang X J, et al. Telecommunication wavelengthband singlephoton emission from single large InAs quantum dots nucleated on lowdensity seed quantum dots. Nanoscale Res Lett, 2016, 11(1), 382
