J. Semicond. >  In Press

Telecom wavelength single photon sources

Xin Cao , Michael Zopf and Fei Ding ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Single photon sources are key components for quantum technologies such as quantum communication, computing and metrology. A key challenge towards the realization of global quantum networks are transmission losses in optical fibers. Therefore, single photon sources are required to emit at the low-loss telecom wavelength bands. However, an ideal telecom wavelength single photon source has yet to be discovered. Here, we review the recent progress in realizing such sources. We start with single photon emission based on atomic ensembles and spontaneous parametric down conversion, and then focus on solid-state emitters including semiconductor quantum dots, defects in silicon carbide and carbon nanotubes. In conclusion, some state-of-the-art applications are highlighted.

Key words: telecom wavelengthsingle photon sourcesquantum communication

Abstract: Single photon sources are key components for quantum technologies such as quantum communication, computing and metrology. A key challenge towards the realization of global quantum networks are transmission losses in optical fibers. Therefore, single photon sources are required to emit at the low-loss telecom wavelength bands. However, an ideal telecom wavelength single photon source has yet to be discovered. Here, we review the recent progress in realizing such sources. We start with single photon emission based on atomic ensembles and spontaneous parametric down conversion, and then focus on solid-state emitters including semiconductor quantum dots, defects in silicon carbide and carbon nanotubes. In conclusion, some state-of-the-art applications are highlighted.

Key words: telecom wavelengthsingle photon sourcesquantum communication



References:

[1]

Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc A, 1985, 400, 97

[2]

Kaltenbaek R, Walther P, Tiefenbacher F, et al. High-speed linear optics quantum computing using active feed-forward. Nature, 2007, 445, 65

[3]

Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81, 1301

[4]

Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci, 2014, 560, 7

[5]

Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409, 46

[6]

Müller M, Vural H, Schneider C, et al. Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys Rev Lett, 2017, 118, 257402

[7]

Kimble H J. The quantum internet. Nature, 2008, 453, 1023

[8]

Clauser J F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effects. Phys Rev D, 1974, 9, 853

[9]

Chou C W, Polyakov S V, Kuzmich A, et al. Single-photon generation from stored excitation in an atomic ensemble. Phys Rev Lett, 2004, 92, 213601

[10]

Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431, 1075

[11]

Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407, 491

[12]

Alléaume R, Treussart F, Courty J M, et al. Photon statistics characterization of a single-photon source. New J Phys, 2004, 6, 85

[13]

Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290, 2282

[14]

Brouri R, Beveratos A, Poizat J P, et al. Photon antibunching in the fluorescence of individual color centers in diamond. Opt Lett, 2000, 25, 1294

[15]

Neu E, Steinmetz D, Riedrich-M?ller J, et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys, 2011, 13, 025012

[16]

Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys Rev Lett, 2008, 100, 090501

[17]

Eisaman M D, Fan J, Migdall A, et al. Single-photon sources and detectors. Rev Sci Instrum, 2011, 82, 071101

[18]

Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography. J Cryptol, 1992, 5, 3

[19]

Hughes R J, Buttler W T, Kwiat P G, et al. Free-space quantum key distribution in daylight. J Mod Opt, 2000, 47, 549

[20]

Hughes R J, Nordholt J E, Derkacs D, et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys, 2002, 4, 343

[21]

Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat Photonics, 2017, 11, 509

[22]

Martín-Mateos P. New spectroscopic techniques and architectures for environmental and biomedical applications. PhD Dissertaion, Universidad Carlos III De Madrid, 2015

[23]

Lounis B, Orrit M. Single-photon sources. Rep Prog Phys, 2005, 68, 1129

[24]

Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026

[25]

Hanbury Brown R, Twiss R Q. Correlation between photons in two coherent beams of light. Nature, 1956, 177, 27

[26]

Willis R T, Becerra F E, Orozco L A, et al. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble. Opt Express, 2011, 19, 14632

[27]

Bock M, Lenhard A, Chunnilall C, et al. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Opt Express, 2016, 24, 23992

[28]

Miyazawa T, Takemoto K, Nambu Y, et al. Single-photon emission at 1.5 μm from an InAs / InP quantum dot with highly suppressed multi-photon emission probabilities. Appl Phys Lett, 2016, 109, 132106

[29]

Wang J, Zhou Y, Wang Z, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat Commun, 2018, 9, 4106

[30]

He X, Hartmann N F, Ma X, et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photonics, 2017, 11, 577

[31]

Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 2018, 4, eaar3580

[32]

Kolesov R, Xia K, Reuter R, et al. Optical detection of a single rare-earth ion in a crystal. Nat Commun, 2012, 3, 1029

[33]

Utikal T, Eichhammer E, Petersen L, et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat Commun, 2014, 5, 3627

[34]

Nakamura I, Yoshihiro T, Inagawa H, et al. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K. Sci Rep, 2014, 4, 7364

[35]

Yin C, Rancic M, de Boo G G, et al. Optical addressing of an individual erbium ion in silicon. Nature, 213, 497, 91

[36]

Chanelière T, Matsukevich D N, Jenkins S D, et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 2006, 96, 093604

[37]

Jenkins S D, Matsukevich D N, Chanelière T, et al. Quantum telecommunication with atomic ensembles. J Opt Soc Am B, 2007, 24, 316

[38]

Bao X, Reingruber A, Dietrich P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat Phys, 2012, 8, 517

[39]

Saglamyurek E, Jin J, Verma V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat Photonics, 2015, 9, 83

[40]

Bussières F, Clausen C, Tiranov A, et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat Photonics, 2014, 8, 775

[41]

Maring N, Farrera P, Kutluer K, et al. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature, 2017, 551, 485

[42]

Mckeever J, Boca A, Boozer A D, et al. Deterministic generation of single photons from one atom trapped in a cavity. Science, 2004, 303, 1992

[43]

Klyshko D N, Penin A N, Polkovnikov B F. Parametric luminescence and light scattering by polaritons. JETP Lett, 1970, 11, 5

[44]

Production P. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 1970, 25, 84

[45]

Pan J W, Chen Z B, Lu C Y, et al. Multiphoton entanglement and interferometry. Rev Mod Phys, 2012, 84, 777

[46]

Fujii G, Namekata N, Motoya M, et al. Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide. Opt Express, 2007, 15, 12769

[47]

Xue Y, Yoshizawa A, Tsuchida H. Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources. Phys Rev A, 2012, 85

[48]

Lo R, Jiang H, Rogers S, et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt Express, 2017, 25, 24531

[49]

Jin R, Shimizu R, Wakui K, et al. Widely tunable single photon source with high purity at telecom wavelength. Opt Express, 2013, 21, 10659

[50]

Zaske S, Lenhard A, Becher C. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band. Opt Express, 2011, 19, 12825

[51]

Fekete J, Riel?nder D, Cristiani M, et al. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys Rev Lett, 2013, 110, 220502

[52]

Zaske S, Lenhard A, Ke?ler C A, et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys Rev Lett, 2012, 109, 147404

[53]

Fasel S, Alibart O, Tanzilli S, et al. High-quality asynchronous heralded single-photon source at telecom wavelength High-quality asynchronous heralded single-photon source at telecom wavelength. New J Phys, 2004, 6, 163

[54]

Wolfgramm F, Xing X, Cerè A, et al. Bright filter-free source of indistinguishable photon pairs. Opt Express, 2008, 16, 18145

[55]

Ahlrichs A, Benson O. Bright source of indistinguishable photons based on cavity-enhanced parametric down- conversion utilizing the cluster effect parametric down-conversion utilizing the cluster effect. Appl Phys Lett, 2016, 108, 021111

[56]

Xiong C, Zhang X, Liu Z, et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat Commun, 2016, 7, 10853

[57]

Wang X, Chen L, Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117

[58]

Meyer-Scott E, Prasannan N, Eigner C, et al. High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics. Opt Express, 2018, 26, 32475

[59]

Osorio C I, Sangouard N, Thew R T. On the purity and indistinguishability of down-converted photons. J Phys B, 2013, 46, 055501

[60]

Ngah L A, Alibart O, Labonté L, et al. Ultra-fast heralded single photon source based on telecom technology. Lasers Photonics Rev, 2015, 6, 1

[61]

Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501

[62]

Atkinson P, Zallo E, Schmidt O G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J Appl Phys, 2012, 112, 054303

[63]

Huo Y H, Rastelli A, Schmidt O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett, 2013, 102, 1

[64]

Marzin J Y, Gérard J M, Izrael A, et al. Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett, 2000, 73, 716

[65]

Grundmann M, Stier O, Bimberg D. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys Rev B, 1995, 52, 11969

[66]

Fry P W, Itskevich I E, Mowbray D J, et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys Rev Lett, 2000, 84, 733

[67]

Heitz R, Kalburge A, Xie Q, et al. Excited states and energy relaxation in stacked InAs / GaAs quantum dots. Phys Rev B, 1998, 57, 9050

[68]

Ugur A, Hatami F, Masselink W T, et al. Single-dot optical emission from ultralow density well-isolated InP quantum dots. Appl Phys Lett, 2008, 93, 143111

[69]

Hatami F, Masselink W T, Schrottke L, et al. InP quantum dots embedded in GaP: Optical properties and carrier dynamics. Phys Rev B, 2003, 67, 085306

[70]

Hatami F, Lordi V, Harris J S, et al. Red light-emitting diodes based on InP/GaP quantum dots. J Appl Phys, 2005, 97

[71]

Song Y, Simmonds P J, Lee M L. Self-assembled GaP quantum dots on Self-assembled In0.5Ga0.5As quantum dots on GaP. Appl Phys Lett, 2013, 97, 223110

[72]

Nguyen Thanh T, Robert C, Cornet C, et al. Room temperature photoluminescence of high density (In, Ga)As/GaP quantum dots. Appl Phys Lett, 2011, 99, 143123

[73]

Oshinowo J, Nishioka M, Ishida S, et al. Highly uniform InGaAs / GaAs quantum dots (~15 nm) by metalorganic chemical vapor deposition. Appl Phys Lett, 1994, 65, 1421

[74]

Ramsay A J, Gopal A V, Gauger E M, et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett, 2010, 104, 017402

[75]

Heitz R, Veit M, Ledentsov N N, et al. Energy relaxation by multiphonon processes in InAs / GaAs quantum dots. Phys Rev B, 1997, 56, 10435

[76]

Seravalli L, Trevisi G, Frigeri P, et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl Phys Lett, 2011, 98, 173112

[77]

Paul M, Olbrich F, H?schele J, et al. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/ GaAs metamorphic buffers. Appl Phys Lett, 2017, 111, 033102

[78]

Kettler J, Paul M, Olbrich F, et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl Phys B, 2016, 122, 1

[79]

Ustinov V M, Maleev N A, Zhukov A E, et al. InAs / InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl Phys Lett, 1999, 74, 2815

[80]

Olbrich F, Kettler J, Bayerbach M, et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer. J Appl Phys, 2017, 121, 184302

[81]

Paul M, Kettler J, Zeuner K, et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm. Appl Phys Lett, 2015, 106, 122105

[82]

Chen Z S, Ma B, Shang X J, et al. Bright single-photon source at 1.3 μm based on inas bilayer quantum dot in micropillar. Nanoscale Res Lett, 2017, 12, 2321

[83]

Chen Z S, Ma B, Shang X J, He Y, et al. Telecommunication wavelength-band single-photon emission from single large InAs quantum dots nucleated on low-density seed quantum dots. Nanoscale Res Lett, 2016, 11, 1

[84]

Benyoucef M, Yacob M, Reithmaier J P, et al. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl Phys Lett, 2013, 103, 162101

[85]

Takemoto K, Sakuma Y, Hirose S, et al. Observation of exciton transition in 1.3–1.55 μm band from single InAs/InP quantum dots in mesa structure. Jpn J Appl Phys, 2004, 43, 349

[86]

Dusanowski L, Syperek M, Mrowinski P, et al. Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash. Appl Phys Lett, 2014, 105

[87]

Takemoto K, Takatsu M, Hirose S, et al. An optical horn structure for single- photon source using quantum dots at telecommunication wavelength. J Appl Phys, 2007, 101, 081720

[88]

Dusanowski ?, Syperek M, Misiewicz J, et al. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl Phys Lett, 2016, 108, 163108

[89]

Marcet S, Ohtani K, Ohno H. Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Appl Phys Lett, 2010, 96, 101117

[90]

Bayer M, Ortner G, Stern O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B, 2002, 65, 195315

[91]

Zhang J, Huo Y, Rastelli A, et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett, 2015, 15, 422

[92]

Chen Y, Zhang J, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387

[93]

Zhang Y, Chen Y, Mietschke M, et al. Monolithically integrated microelectromechanical systems for on-chip strain engineering of quantum dots. Nano Lett, 2016, 16, 5785

[94]

Zeuner K D, Paul M, Lettner T, et al. A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band. arXiv: 1801.01518v1, 2018

[95]

Balet L, Francardi M, Gerardino A, et al. Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths. Appl Phys Lett, 2007, 91, 123115

[96]

Birowosuto M D, Sumikura H, Matsuo S, et al. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling. Sci Rep, 2012, 2, 321

[97]

Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9, 2994

[98]

Mrowinski P, Sek G. Modelling the enhancement of spectrally broadband extraction efficiency of emission from single InAs/InP quantum dots at telecommunication wavelengths. Phys B, 2019, 562, 141

[99]

Srocka N, Musia A, Schneider P I, et al. Enhanced photon-extraction efficiency from InGaAs / GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Adv, 2018, 8, 085205

[100]

Takemoto K, Takatsu M, Hirose S, et al. An optical horn structure for single-photon source using quantum dots at telecommunication wavelength. J Appl Phys, 2007, 101, 081720

[101]

Kim J Y, Cai T, Richardson C J K, et al. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 2016, 3, 577

[102]

Son N T, Carlsson P, Hassan J ul, et al. Divacancy in 4H-SiC. Phys Rev Lett, 2006, 96, 055501

[103]

Magnusson B, Janzén E. Optical Characterization of Deep Level Defects in SiC. Mater Sci Forum, 2005, 483–485, 341

[104]

Lijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56

[105]

H?gele A, Galland C, Winger M, et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys Rev Lett, 2008, 100, 1217401

[106]

Crochet J J, Duque J G, Werner J H, et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett, 2012, 12, 5091

[107]

Ma X, Hartmann N F, Baldwin J K S, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol, 2015, 10, 671

[108]

Ghosh S, Bachilo S M, Simonette R A, et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 2010, 330, 1656

[109]

Ma X, Baldwin J K S, Hartmann N F, et al. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv Funct Mater, 2015, 25, 6157

[110]

Ma X, Adamska L, Yamaguchi H, et al. Electronic structure and chemical. nature, of oxygen dopant states in carbon nanotubes. ACS Nano, 2014, 8, 10782

[111]

Liao S, Cai W, Liu W, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549, 43

[112]

Comandar L C, Fr?hlich B, Lucamarini M, et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl Phys Lett, 2014, 104, 021101

[113]

Yin H, Chen T, Yu Z, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117, 190501

[114]

Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557, 400

[115]

Liao S, Cai W, Handsteiner J, et al. Satellite-relayed intercontinental quantum network. Phys Rev Lett, 2018, 120, 030501

[116]

Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70, 1895

[117]

Bouwmeester D, Pan J, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390, 575

[118]

Sun Q, Mao Y, Chen S, et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat Photonics, 2016, 10, 671

[119]

Valivarthi R, Puigibert G, Zhou Q, et al. Quantum teleportation across a metropolitan fibre network. Nat Photonics, 2016, 10, 676

[120]

Yin J, Ren J, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488, 185

[121]

Ma X, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489, 269

[122]

Yang M, Li L, Yang K, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549, 70

[123]

Müller T, Krysa A B, Huwer J, et al. A quantum light-emitting diode for the standard telecom window around 1,550nm. Nat Commun, 2018, 9, 1

[124]

Zopf M, Macha T, Keil R, et al. Frequency feedback for two-photon interference from separate quantum dots. Phys Rev B, 2018, 98, 161302

[125]

Gazzano O, de Vasconcellos S M, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 2013, 4, 1425

[126]

Toishi M, Englund D, Faraon A, et al. High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt Express, 2009, 17, 14618

[1]

Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc A, 1985, 400, 97

[2]

Kaltenbaek R, Walther P, Tiefenbacher F, et al. High-speed linear optics quantum computing using active feed-forward. Nature, 2007, 445, 65

[3]

Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81, 1301

[4]

Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci, 2014, 560, 7

[5]

Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409, 46

[6]

Müller M, Vural H, Schneider C, et al. Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys Rev Lett, 2017, 118, 257402

[7]

Kimble H J. The quantum internet. Nature, 2008, 453, 1023

[8]

Clauser J F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effects. Phys Rev D, 1974, 9, 853

[9]

Chou C W, Polyakov S V, Kuzmich A, et al. Single-photon generation from stored excitation in an atomic ensemble. Phys Rev Lett, 2004, 92, 213601

[10]

Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431, 1075

[11]

Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature. Nature, 2000, 407, 491

[12]

Alléaume R, Treussart F, Courty J M, et al. Photon statistics characterization of a single-photon source. New J Phys, 2004, 6, 85

[13]

Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290, 2282

[14]

Brouri R, Beveratos A, Poizat J P, et al. Photon antibunching in the fluorescence of individual color centers in diamond. Opt Lett, 2000, 25, 1294

[15]

Neu E, Steinmetz D, Riedrich-M?ller J, et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys, 2011, 13, 025012

[16]

Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys Rev Lett, 2008, 100, 090501

[17]

Eisaman M D, Fan J, Migdall A, et al. Single-photon sources and detectors. Rev Sci Instrum, 2011, 82, 071101

[18]

Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography. J Cryptol, 1992, 5, 3

[19]

Hughes R J, Buttler W T, Kwiat P G, et al. Free-space quantum key distribution in daylight. J Mod Opt, 2000, 47, 549

[20]

Hughes R J, Nordholt J E, Derkacs D, et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys, 2002, 4, 343

[21]

Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat Photonics, 2017, 11, 509

[22]

Martín-Mateos P. New spectroscopic techniques and architectures for environmental and biomedical applications. PhD Dissertaion, Universidad Carlos III De Madrid, 2015

[23]

Lounis B, Orrit M. Single-photon sources. Rep Prog Phys, 2005, 68, 1129

[24]

Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026

[25]

Hanbury Brown R, Twiss R Q. Correlation between photons in two coherent beams of light. Nature, 1956, 177, 27

[26]

Willis R T, Becerra F E, Orozco L A, et al. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble. Opt Express, 2011, 19, 14632

[27]

Bock M, Lenhard A, Chunnilall C, et al. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Opt Express, 2016, 24, 23992

[28]

Miyazawa T, Takemoto K, Nambu Y, et al. Single-photon emission at 1.5 μm from an InAs / InP quantum dot with highly suppressed multi-photon emission probabilities. Appl Phys Lett, 2016, 109, 132106

[29]

Wang J, Zhou Y, Wang Z, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat Commun, 2018, 9, 4106

[30]

He X, Hartmann N F, Ma X, et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photonics, 2017, 11, 577

[31]

Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 2018, 4, eaar3580

[32]

Kolesov R, Xia K, Reuter R, et al. Optical detection of a single rare-earth ion in a crystal. Nat Commun, 2012, 3, 1029

[33]

Utikal T, Eichhammer E, Petersen L, et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat Commun, 2014, 5, 3627

[34]

Nakamura I, Yoshihiro T, Inagawa H, et al. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K. Sci Rep, 2014, 4, 7364

[35]

Yin C, Rancic M, de Boo G G, et al. Optical addressing of an individual erbium ion in silicon. Nature, 213, 497, 91

[36]

Chanelière T, Matsukevich D N, Jenkins S D, et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 2006, 96, 093604

[37]

Jenkins S D, Matsukevich D N, Chanelière T, et al. Quantum telecommunication with atomic ensembles. J Opt Soc Am B, 2007, 24, 316

[38]

Bao X, Reingruber A, Dietrich P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat Phys, 2012, 8, 517

[39]

Saglamyurek E, Jin J, Verma V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat Photonics, 2015, 9, 83

[40]

Bussières F, Clausen C, Tiranov A, et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat Photonics, 2014, 8, 775

[41]

Maring N, Farrera P, Kutluer K, et al. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature, 2017, 551, 485

[42]

Mckeever J, Boca A, Boozer A D, et al. Deterministic generation of single photons from one atom trapped in a cavity. Science, 2004, 303, 1992

[43]

Klyshko D N, Penin A N, Polkovnikov B F. Parametric luminescence and light scattering by polaritons. JETP Lett, 1970, 11, 5

[44]

Production P. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 1970, 25, 84

[45]

Pan J W, Chen Z B, Lu C Y, et al. Multiphoton entanglement and interferometry. Rev Mod Phys, 2012, 84, 777

[46]

Fujii G, Namekata N, Motoya M, et al. Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide. Opt Express, 2007, 15, 12769

[47]

Xue Y, Yoshizawa A, Tsuchida H. Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources. Phys Rev A, 2012, 85

[48]

Lo R, Jiang H, Rogers S, et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt Express, 2017, 25, 24531

[49]

Jin R, Shimizu R, Wakui K, et al. Widely tunable single photon source with high purity at telecom wavelength. Opt Express, 2013, 21, 10659

[50]

Zaske S, Lenhard A, Becher C. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band. Opt Express, 2011, 19, 12825

[51]

Fekete J, Riel?nder D, Cristiani M, et al. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys Rev Lett, 2013, 110, 220502

[52]

Zaske S, Lenhard A, Ke?ler C A, et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys Rev Lett, 2012, 109, 147404

[53]

Fasel S, Alibart O, Tanzilli S, et al. High-quality asynchronous heralded single-photon source at telecom wavelength High-quality asynchronous heralded single-photon source at telecom wavelength. New J Phys, 2004, 6, 163

[54]

Wolfgramm F, Xing X, Cerè A, et al. Bright filter-free source of indistinguishable photon pairs. Opt Express, 2008, 16, 18145

[55]

Ahlrichs A, Benson O. Bright source of indistinguishable photons based on cavity-enhanced parametric down- conversion utilizing the cluster effect parametric down-conversion utilizing the cluster effect. Appl Phys Lett, 2016, 108, 021111

[56]

Xiong C, Zhang X, Liu Z, et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat Commun, 2016, 7, 10853

[57]

Wang X, Chen L, Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117

[58]

Meyer-Scott E, Prasannan N, Eigner C, et al. High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics. Opt Express, 2018, 26, 32475

[59]

Osorio C I, Sangouard N, Thew R T. On the purity and indistinguishability of down-converted photons. J Phys B, 2013, 46, 055501

[60]

Ngah L A, Alibart O, Labonté L, et al. Ultra-fast heralded single photon source based on telecom technology. Lasers Photonics Rev, 2015, 6, 1

[61]

Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501

[62]

Atkinson P, Zallo E, Schmidt O G. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J Appl Phys, 2012, 112, 054303

[63]

Huo Y H, Rastelli A, Schmidt O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett, 2013, 102, 1

[64]

Marzin J Y, Gérard J M, Izrael A, et al. Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett, 2000, 73, 716

[65]

Grundmann M, Stier O, Bimberg D. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys Rev B, 1995, 52, 11969

[66]

Fry P W, Itskevich I E, Mowbray D J, et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys Rev Lett, 2000, 84, 733

[67]

Heitz R, Kalburge A, Xie Q, et al. Excited states and energy relaxation in stacked InAs / GaAs quantum dots. Phys Rev B, 1998, 57, 9050

[68]

Ugur A, Hatami F, Masselink W T, et al. Single-dot optical emission from ultralow density well-isolated InP quantum dots. Appl Phys Lett, 2008, 93, 143111

[69]

Hatami F, Masselink W T, Schrottke L, et al. InP quantum dots embedded in GaP: Optical properties and carrier dynamics. Phys Rev B, 2003, 67, 085306

[70]

Hatami F, Lordi V, Harris J S, et al. Red light-emitting diodes based on InP/GaP quantum dots. J Appl Phys, 2005, 97

[71]

Song Y, Simmonds P J, Lee M L. Self-assembled GaP quantum dots on Self-assembled In0.5Ga0.5As quantum dots on GaP. Appl Phys Lett, 2013, 97, 223110

[72]

Nguyen Thanh T, Robert C, Cornet C, et al. Room temperature photoluminescence of high density (In, Ga)As/GaP quantum dots. Appl Phys Lett, 2011, 99, 143123

[73]

Oshinowo J, Nishioka M, Ishida S, et al. Highly uniform InGaAs / GaAs quantum dots (~15 nm) by metalorganic chemical vapor deposition. Appl Phys Lett, 1994, 65, 1421

[74]

Ramsay A J, Gopal A V, Gauger E M, et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett, 2010, 104, 017402

[75]

Heitz R, Veit M, Ledentsov N N, et al. Energy relaxation by multiphonon processes in InAs / GaAs quantum dots. Phys Rev B, 1997, 56, 10435

[76]

Seravalli L, Trevisi G, Frigeri P, et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl Phys Lett, 2011, 98, 173112

[77]

Paul M, Olbrich F, H?schele J, et al. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/ GaAs metamorphic buffers. Appl Phys Lett, 2017, 111, 033102

[78]

Kettler J, Paul M, Olbrich F, et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl Phys B, 2016, 122, 1

[79]

Ustinov V M, Maleev N A, Zhukov A E, et al. InAs / InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl Phys Lett, 1999, 74, 2815

[80]

Olbrich F, Kettler J, Bayerbach M, et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer. J Appl Phys, 2017, 121, 184302

[81]

Paul M, Kettler J, Zeuner K, et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm. Appl Phys Lett, 2015, 106, 122105

[82]

Chen Z S, Ma B, Shang X J, et al. Bright single-photon source at 1.3 μm based on inas bilayer quantum dot in micropillar. Nanoscale Res Lett, 2017, 12, 2321

[83]

Chen Z S, Ma B, Shang X J, He Y, et al. Telecommunication wavelength-band single-photon emission from single large InAs quantum dots nucleated on low-density seed quantum dots. Nanoscale Res Lett, 2016, 11, 1

[84]

Benyoucef M, Yacob M, Reithmaier J P, et al. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl Phys Lett, 2013, 103, 162101

[85]

Takemoto K, Sakuma Y, Hirose S, et al. Observation of exciton transition in 1.3–1.55 μm band from single InAs/InP quantum dots in mesa structure. Jpn J Appl Phys, 2004, 43, 349

[86]

Dusanowski L, Syperek M, Mrowinski P, et al. Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash. Appl Phys Lett, 2014, 105

[87]

Takemoto K, Takatsu M, Hirose S, et al. An optical horn structure for single- photon source using quantum dots at telecommunication wavelength. J Appl Phys, 2007, 101, 081720

[88]

Dusanowski ?, Syperek M, Misiewicz J, et al. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl Phys Lett, 2016, 108, 163108

[89]

Marcet S, Ohtani K, Ohno H. Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Appl Phys Lett, 2010, 96, 101117

[90]

Bayer M, Ortner G, Stern O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B, 2002, 65, 195315

[91]

Zhang J, Huo Y, Rastelli A, et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett, 2015, 15, 422

[92]

Chen Y, Zhang J, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387

[93]

Zhang Y, Chen Y, Mietschke M, et al. Monolithically integrated microelectromechanical systems for on-chip strain engineering of quantum dots. Nano Lett, 2016, 16, 5785

[94]

Zeuner K D, Paul M, Lettner T, et al. A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band. arXiv: 1801.01518v1, 2018

[95]

Balet L, Francardi M, Gerardino A, et al. Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths. Appl Phys Lett, 2007, 91, 123115

[96]

Birowosuto M D, Sumikura H, Matsuo S, et al. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling. Sci Rep, 2012, 2, 321

[97]

Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9, 2994

[98]

Mrowinski P, Sek G. Modelling the enhancement of spectrally broadband extraction efficiency of emission from single InAs/InP quantum dots at telecommunication wavelengths. Phys B, 2019, 562, 141

[99]

Srocka N, Musia A, Schneider P I, et al. Enhanced photon-extraction efficiency from InGaAs / GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Adv, 2018, 8, 085205

[100]

Takemoto K, Takatsu M, Hirose S, et al. An optical horn structure for single-photon source using quantum dots at telecommunication wavelength. J Appl Phys, 2007, 101, 081720

[101]

Kim J Y, Cai T, Richardson C J K, et al. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 2016, 3, 577

[102]

Son N T, Carlsson P, Hassan J ul, et al. Divacancy in 4H-SiC. Phys Rev Lett, 2006, 96, 055501

[103]

Magnusson B, Janzén E. Optical Characterization of Deep Level Defects in SiC. Mater Sci Forum, 2005, 483–485, 341

[104]

Lijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56

[105]

H?gele A, Galland C, Winger M, et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys Rev Lett, 2008, 100, 1217401

[106]

Crochet J J, Duque J G, Werner J H, et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett, 2012, 12, 5091

[107]

Ma X, Hartmann N F, Baldwin J K S, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol, 2015, 10, 671

[108]

Ghosh S, Bachilo S M, Simonette R A, et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 2010, 330, 1656

[109]

Ma X, Baldwin J K S, Hartmann N F, et al. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv Funct Mater, 2015, 25, 6157

[110]

Ma X, Adamska L, Yamaguchi H, et al. Electronic structure and chemical. nature, of oxygen dopant states in carbon nanotubes. ACS Nano, 2014, 8, 10782

[111]

Liao S, Cai W, Liu W, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549, 43

[112]

Comandar L C, Fr?hlich B, Lucamarini M, et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl Phys Lett, 2014, 104, 021101

[113]

Yin H, Chen T, Yu Z, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117, 190501

[114]

Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557, 400

[115]

Liao S, Cai W, Handsteiner J, et al. Satellite-relayed intercontinental quantum network. Phys Rev Lett, 2018, 120, 030501

[116]

Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70, 1895

[117]

Bouwmeester D, Pan J, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390, 575

[118]

Sun Q, Mao Y, Chen S, et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat Photonics, 2016, 10, 671

[119]

Valivarthi R, Puigibert G, Zhou Q, et al. Quantum teleportation across a metropolitan fibre network. Nat Photonics, 2016, 10, 676

[120]

Yin J, Ren J, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488, 185

[121]

Ma X, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489, 269

[122]

Yang M, Li L, Yang K, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549, 70

[123]

Müller T, Krysa A B, Huwer J, et al. A quantum light-emitting diode for the standard telecom window around 1,550nm. Nat Commun, 2018, 9, 1

[124]

Zopf M, Macha T, Keil R, et al. Frequency feedback for two-photon interference from separate quantum dots. Phys Rev B, 2018, 98, 161302

[125]

Gazzano O, de Vasconcellos S M, Arnold C, et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 2013, 4, 1425

[126]

Toishi M, Englund D, Faraon A, et al. High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt Express, 2009, 17, 14618

[1]

Yating Lin, Yongzheng Ye, Wei Fang. Electrically driven single-photon sources. J. Semicond., 2019, 40(7): 071904. doi: 10.1088/1674-4926/40/7/071904

[2]

Qiang Li, Ji-Yang Zhou, Zheng-Hao Liu, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Stable single photon sources in the near C-band range above 400 K. J. Semicond., 2019, 40(7): 072902. doi: 10.1088/1674-4926/40/7/072902

[3]

Disheng Chen, Weibo Gao. Quantum light sources from semiconductor. J. Semicond., 2019, 40(7): 070301. doi: 10.1088/1674-4926/40/7/070301

[4]

Chuanwei Liu, Shenqiang Zhai, Jinchuan Zhang, Yuhong Zhou, Zhiwei Jia, Fengqi Liu, Zhanguo Wang. Free-space communication based on quantum cascade laser. J. Semicond., 2015, 36(9): 094009. doi: 10.1088/1674-4926/36/9/094009

[5]

Zhe He, Jiawei Yang, Lidan Zhou, Yan Chen, Tianming Zhao, Ying Yu, Jin Liu. Broadband photonic structures for quantum light sources. J. Semicond., 2019, 40(7): 071905. doi: 10.1088/1674-4926/40/7/071905

[6]

Kong Meiying, Zeng Yiping, Li Jinmin. Tuning of infrared absorption wavelength of MBE InGaAs/GaAs quantum Dots. J. Semicond., 2003, 24(S1): 78.

[7]

Xu Wang, Lei Xu, Yun Jiang, Zhouyang Yin, Christopher C. S. Chan, Chaoyong Deng, Robert A. Taylor. III–V compounds as single photon emitters. J. Semicond., 2019, 40(7): 071906. doi: 10.1088/1674-4926/40/7/071906

[8]

Lixia Zheng, Jin Wu, Longxing Shi, Shuiqing Xi, Siyang Liu, Weifeng Sun. Active quenching circuit for a InGaAs single-photon avalanche diode. J. Semicond., 2014, 35(4): 045011. doi: 10.1088/1674-4926/35/4/045011

[9]

Jun Zhang. Single photon-chiral phonon entanglement in monolayer WSe2. J. Semicond., 2019, 40(7): 070404. doi: 10.1088/1674-4926/40/7/070404

[10]

Guo Fangmin, Li Ning, Yu Shaoxin, Xiong Dayuan, Lin Jianfeng, Hou Ying, He Yuhuan, Zhu Ziqiang, Lu Wei, Huang Qi, Zhou Junming. Diffraction Coupling of a Very Long Wavelength Quantum Well Infrared Photodetector Linear Array. J. Semicond., 2006, 27(6): 1109.

[11]

Zhu Yan, Li Mifeng, He Jifang, Yu Ying, Ni Haiqiao, Xu Yingqiang, Wang Juan, He Zhenhong, Niu Zhichuan. GaAs-based long-wavelength InAs bilayer quantum dots grown by molecular beam epitaxy. J. Semicond., 2011, 32(8): 083001. doi: 10.1088/1674-4926/32/8/083001

[12]

Hao Luo, Cheng’ao Yang, Shengwen Xie, Xiaoli Chai, Shushan Huang, Yu Zhang, Yingqiang Xu, Zhichuan Niu. High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength. J. Semicond., 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007

[13]

Hu Xuening, Luo Junyan, Li Xinqi. Quantum Measurement of Single Electron State by a Mesoscopic Detector. J. Semicond., 2006, 27(2): 218.

[14]

Han Weihua, Yomoto M, Kasai S. Detection of Terahertz Photon by GaAs-Based Single Electron Transistor at Low Temperatures. J. Semicond., 2007, 28(4): 500.

[15]

Qiuyang He, Yue Xu, Feifei Zhao. An accurate simulation model for single-photon avalanche diodes including important statistical effects. J. Semicond., 2013, 34(10): 104007. doi: 10.1088/1674-4926/34/10/104007

[16]

Liu Wei, Yang Fuhua, Wu Meng. A New Method to Investigate InGaAsP Single-Photon AvalancheDiodes Using a Digital Sampling Oscilloscope. J. Semicond., 2006, 27(10): 1711.

[17]

Amandeep Singh, Mamta Khosla, Balwinder Raj. Compact model for ballistic single wall CNTFET under quantum capacitance limit. J. Semicond., 2016, 37(10): 104001. doi: 10.1088/1674-4926/37/10/104001

[18]

Asma Belaid, Abdelkader Hamdoune. Numerical simulation of UV LEDs with GaN and BGaN single quantum well. J. Semicond., 2019, 40(3): 032802. doi: 10.1088/1674-4926/40/3/032802

[19]

Liu Fengqi, Guo Yu, Li Lu, Shao Ye, Liu Junqi, Lu Xiuzhen, Wang Zhanguo. Single Mode Operation of Short-Cavity Quantum Cascade Lasers. J. Semicond., 2006, 27(4): 679.

[20]

Gao Yu, Liu Junqi, Liu Fengqi, Zhang Wei, Zhang Quande, Liu Wanfeng, Li Lu, Wang Lijun, Wang Zhanguo. Single-mode GaAs/AlGaAs quantum cascade microlasers. J. Semicond., 2009, 30(11): 114007. doi: 10.1088/1674-4926/30/11/114007

Search

Advanced Search >>

GET CITATION

X Cao, M Zopf, F Ding, Telecom wavelength single photon sources[J]. J. Semicond., 2019, 40(7): 071901. doi: 10.1088/1674-4926/40/7/071901.

Export: BibTex EndNote

Article Metrics

Article views: 59 Times PDF downloads: 45 Times Cited by: 0 Times

History

Manuscript received: 07 May 2019 Manuscript revised: 05 June 2019 Online: Accepted Manuscript: 14 June 2019 Uncorrected proof: 21 June 2019

Email This Article

User name:
Email:*請輸入正確郵箱
Code:*驗證碼錯誤